4.8 Article

Highly effective hot spots for SERS signatures of Live fibroblasts

Journal

NANOSCALE
Volume 6, Issue 11, Pages 6115-6126

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr00594e

Keywords

-

Funding

  1. Max-Planck society

Ask authors/readers for more resources

Pre-formed silver-boron nanoparticles of 22 nm form pearl-like necklace nanostructures with interparticle junctions of less than 10 nm length in the matrix of polyethylene glycol (8000 Da). The silver necklace nanostructure is stable at 37 degrees C or 70 degrees C and also inside a live cell medium. A polyethylene glycol matrix with a shorter chain length (1000 Da) does not protect the nanoparticles against attraction, and random aggregates are formed. Silver necklace nanostructures exhibit strong Raman enhancement by more than similar to 10(9) which is much higher than for silver-citrate or random silver-boron aggregates. The polymeric matrix of 8000 Da contributes strongly to the electromagnetic field enhancement and removes the chemical contribution to the surface Raman scattering increase. The stable interparticle junctions act as local hot spots for strong Raman scattering signals collected from live fibroblasts and allow systematic in situ studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available