4.7 Article

Bioinspired early detection through gas flow modulation in chemo-sensory systems

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 206, Issue -, Pages 538-547

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2014.09.001

Keywords

Gas sensor array; MOX sensor; Flow modulation; Early detection; Biomimetics; Sniffing

Funding

  1. European Community [216916, TEC2010-20886-C02-02]
  2. Ramon y Cajal program from the Spanish Ministerio de Educacion y Ciencia [RYC-2007-01475]

Ask authors/readers for more resources

The design of bioinspired systems for chemical sensing is an engaging line of research in machine olfaction. Developments in this line could increase the lifetime and sensitivity of artificial chemo-sensory systems. Such approach is based on the sensory systems known in live organisms, and the resulting developed artificial systems are targeted to reproduce the biological mechanisms to some extent. Sniffing behaviour, sampling odours actively, has been studied recently in neuroscience, and it has been suggested that the respiration frequency is an important parameter of the olfactory system, since the odour perception, especially in complex scenarios such as novel odourants exploration, depends on both the stimulus identity and the sampling method. In this work we propose a chemical sensing system based on an array of 16 metal-oxide gas sensors that we combined with an external mechanical ventilator to simulate the biological respiration cycle. The tested gas classes formed a relatively broad combination of two analytes, acetone and ethanol, in binary mixtures. Two sets of low-frequency and high-frequency features were extracted from the acquired signals to show that the high-frequency features contain information related to the gas class. In addition, such information is available at early stages of the measurement, which could make the technique suitable in early detection scenarios. The full data set is made publicly available to the community. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available