4.8 Article

Polarity-Driven 3-Fold Symmetry of GaAs/AlGaAs Core Multishell Nanowires

Journal

NANO LETTERS
Volume 13, Issue 8, Pages 3742-3748

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl401680k

Keywords

Polarity; AlGaAs/GaAs; nanowire; ADF-STEM; growth

Funding

  1. ARC [LE0454166]
  2. Australian Research Council

Ask authors/readers for more resources

AlGaAs/GaAs quantum well heterostructures based on core-multishell nanowires exhibit excellent optical properties which are acutely sensitive to structure and morphology. We characterize these heterostructures and observe them to have 3-fold symmetry about the nanowire axis. Using aberration-corrected annular dark field scanning transmission electron microscopy (ADF-STEM), we measure directly the polarity of the crystal structure and correlate this 49) with the shape and facet orientation of the GaAs core, quantum wells and cap, and the width of radial Al-rich bands. We discuss how the underlying polarity of the crystal structure drives the growth of these heterostructures with a 3-fold symmetry resulting in a nonuniform GaAs quantum well tube and AlGaAs shell. These observations suggest that the AlGaAs growth rate is faster along the < 112 > B compared to the < 112 > A directions and/or that there is a polarity driven surface reconstruction generating AlGaAs growth fronts inclined to the {110} planes. In contrast, the observations suggest that the opposite is true for the GaAs growth, with the preferred surface reconstruction plane being parallel to {110} and an apparent faster growth rate along the < 112 > A. This two-dimensional layer growth of the nanowire multishells strongly depends on the surface energies and surface reconstruction of the facets which are related to the crystal polarity and lead to the 3-fold symmetry observed here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available