4.8 Article

Simulation Studies of Nanomagnet-Based Logic Architecture

Journal

NANO LETTERS
Volume 8, Issue 12, Pages 4173-4178

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl801607p

Keywords

-

Funding

  1. Western Institute of Nanotechnology.

Ask authors/readers for more resources

We report a simulation study on interacting ensembles of Co nanomagnets that can perform basic logic operations and propagate logic signals where the state variable is the magnetization direction. Dipole field coupling between individual nanomagnets drives the logic functionality of the ensemble, and coordinated arrangements of the nanomagnets allow for the logic signal to propagate in a predictable way. Problems with the-integrity of the logic signal arising from instabilities in the constituent magnetizations are solved by introducing a biaxial anisotropy term to the Gibbs magnetic free energy of each nanomagnet. The enhanced stability allows for more complex components of a logic architecture capable of random combinatorial logic, including horizontal wires, vertical wires, junctions, fanout nodes, and a novel universal logic gate. Our simulations define the focus of scaling trends in nanomagnet-based logic and provide estimates of the energy dissipation and time per nanomagnet reversal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available