4.7 Article

Parametric design, fabrication and validation of one-way polymeric valves for artificial sphincters

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 233, Issue -, Pages 184-194

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2015.07.005

Keywords

-

Funding

  1. Fondazione Cassa di Risparmio di Lucca (Lucca, Italy)

Ask authors/readers for more resources

The design of artificial sphincters requires an accurate dimensioning of dedicated valves, normally made of polymeric materials. This effort is also interesting for developing fluid and pressure regulating solutions related to other biomedical and non-biomedical fields. In this article we focused on the parametric design of polymeric valves, by taking inspiration from commercially exploited solutions used in the food industry and performing appropriate scaling in order to make them suitable for artificial organs and components. In addition, different materials with diverse mechanical properties were considered, focusing on a low-cost fabrication approach. Finite element model analyses were conducted to simulate the behavior of different valve profiles and to predict the valve opening pressure. Simulation results were validated by comparing them with experimental results, obtained by fabricating and testing different valve types. This polymeric valve parametric analysis may be exploited for the design of artificial sphincters, having the potential to tackle urinary incontinence, a disease that affects about 350 million people worldwide. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available