4.2 Article

Molecular phylogeny reveals a core clade of Rhytismatales

Journal

MYCOLOGIA
Volume 103, Issue 1, Pages 57-74

Publisher

TAYLOR & FRANCIS INC
DOI: 10.3852/10-060

Keywords

Helotiales; Leotiomycetes; Lophodermium; mitochondrial SSU; nuclear LSU

Categories

Funding

  1. Swedish Taxonomy Initiative, Kungl
  2. Vetenskapsakademien
  3. Helge Ax:son Johnsons Stiftelse
  4. Magn
  5. New Zealand Foundation for Research, Science and Technology through the Defining New Zealand's Land Biota OBI
  6. Bergvalls Stiftelse

Ask authors/readers for more resources

Rhytismatales (Leotiomycetes, Pezizomycotina, Ascomycota) are an order of mostly plant-associated ascomycetes with a global distribution. Well known taxa include the Rhytisma tar spots on Acer spp. and several needle-cast pathogens in genera Lophodermium and Meloderma. Critical studies are lacking at all taxonomic ranks from order to species, and in particular the genus taxonomy in the order has been criticized for being unnatural. We used nuclear LSU and mitochondrial SSU sequences in Bayesian phylogenetic analyses to define a core clade of Rhytismatales sensu strict. Some of the genera traditionally placed within the Rhytismatales, Ascodichaena, Marthamyces, Mellitiosporium, Potebniamyces, Propolis and Pseudophacidium, are shown to be phylogenetically distinct, all related to various other taxa at present placed in the polyphyletic Helotiales. Within the core clade only Cudonia, Spathularia and Terriera are supported as monophyletic. The large genera Coccomyces, Hypoderma and Lophoderminum all are polyphyletic as are a few smaller genera. The traditionally used characters of ascoma and spore shape are shown to be unreliable for the delimitation of monophyletic genera but in some cases can be useful when combined with other characters. In this study we provide 72 new nrLSU and 64 new mtSSU sequences. Together with publicly available sequences data for 103 specimens representing 91 species of Rhytismatales are now available. Despite this taxon sampling intensity is still too low to propose an alternative generic taxonomy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available