4.1 Article

A novel variable number of tandem repeats (VNTR) polymorphism containing Sp1 binding elements in the promoter of XRCC5 is a risk factor for human bladder cancer

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mrfmmm.2007.08.011

Keywords

bladder cancer; XRCC5; genetic susceptibility; transcription activity

Ask authors/readers for more resources

X-ray repair cross-complementing 5 (XRCC5) is a gene involved in repair of DNA double-strand breaks. Abnormal expression of the XRCC5 protein is associated with genomic instability and an increased incidence of cancers. In our study, a polymorphism with a variable number of tandem repeats (21-bp repeat elements at position -201 to -160 relative to the initiation of transcription) in the promoter of XRCC5 was identified. As determined with gel-shift and super-shift assays, the binding affinity of the transcription factor Sp1 to the allele with two 21-bp repeats was greater than that for the allele with one 21-bp repeat. As established with a reporter assay, plasmids containing zero or one repeat element had higher transcriptional activities than plasmids containing two repeat elements. Furthermore, fewer tandem repeats in the promoter of XRCC5 was associated with enhanced levels of the XRCC5 protein in bladder cancer patients. Although, in a case-control study, the different genotypes were not associated with the risk of bladder cancer, individuals not carrying the two tandem repeats allele had an increased risk of bladder cancer compared with those carrying the allele with two repeats. These results indicated that, at least in a population in southeastern China, this polymorphism in the promoter of XRCC5 could regulate the expression of XRCC5 and thereby contribute to susceptibility to bladder cancer. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biotechnology & Applied Microbiology

The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis

C. F. M. Menck, R. S. Galhardo, A. Quinet

Summary: Studies have shown that xeroderma pigmentosum variant (XP-V) patients have mutations in the POLH gene, resulting in a high frequency of skin tumors. However, it is paradoxical that the translesion synthesis DNA polymerase eta (Pol η) in these patients can actually suppress mutations, and the mechanism behind this is still unclear. Recent evidence suggests that cyclobutane pyrimidine dimers (CPDs) play an instructional role for Pol η, enabling accurate replication of these lesions, and the mutagenic effects induced by UV radiation are caused by the deamination of C-containing CPDs. This process leads to C>T transitions, which are the most common mutations in skin cancers. The delayed replication in XP-V cells amplifies the deamination of C in CPDs and increases the burden of C>T mutations through the activity of backup TLS polymerases.

MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS (2024)