4.1 Article

Genetic polymorphisms in catalase and CYP1B1 determine DNA adduct formation by benzo(a)pyrene ex vivo

Journal

MUTAGENESIS
Volume 28, Issue 2, Pages 181-185

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mutage/ges070

Keywords

-

Funding

  1. Province of Limburg, the Netherlands
  2. European Network of Excellence (NoE)
  3. Environmental cancer, nutrition and individual susceptibility (ECNIS)
  4. sixth Framework programme (FP6) [FOOD-CT-2005-513943]

Ask authors/readers for more resources

Genetic polymorphisms can partially explain the large inter-individual variation in DNA adduct levels following exposure to polycyclic aromatic hydrocarbons. Effects of genetic polymorphisms on DNA adduct formation are difficult to assess in human studies because exposure misclassification attenuates underlying relationships. Conversely, ex vivo studies offer the advantage of controlled exposure settings, allowing the possibility to better elucidate genotypephenotype relationships and genegene interactions. Therefore, we exposed lymphocytes of 168 non-smoking volunteers ex vivo to the environmental pollutant benzo(a)pyrene (BaP) and BaP-related DNA adducts were quantified. Thirty-four genetic polymorphisms were assessed in genes involved in carcinogen metabolism, oxidative stress and DNA repair. Polymorphisms in catalase (CAT, rs1001179) and cytochrome P450 1B1 (CYP1B1, rs1800440) were significantly associated with DNA adduct levels, especially when combined. Moreover, reverse transcriptionpolymerase chain reaction (RTPCR) analysis in a subset of 30 subjects revealed that expression of catalase correlated strongly with expression of CYP1B1 (R 0.92, P < 0.001). To further investigate the mechanism by which catalase influences CYP1B1 and how they simultaneously affect BaP-related DNA adduct levels, catalase expression was transiently knocked down in the human lung epithelial cell line A549. Although catalase knockdown did not immediately change CYP1B1 gene expression, recovery of catalase expression 8 h after the knockdown coincided with a 2.2-fold increased expression of CYP1B1 (P < 0.05). We conclude that the genetic polymorphism in the promoter region of CAT may determine the amount and activity of catalase, which may subsequently regulate the expression of CYP1B1. As a result, both genetic polymorphisms modulate DNA adduct levels in lymphocytes by BaP ex vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available