4.6 Article

Free-Base Carboxyphenyl Porphyrin Films Using a TiO2 Columnar Matrix: Characterization and Application as NO2 Sensors

Journal

SENSORS
Volume 15, Issue 5, Pages 11118-11132

Publisher

MDPI
DOI: 10.3390/s150511118

Keywords

carboxyphenyl porphyrin; microstructured TiO2 film; NO2; optical gas sensor; thin film

Funding

  1. Ministerio de Economia y Competitividad of Spain [MAT2014-57652-C2-2-R]
  2. Junta de Andalucia [FQM-2310]

Ask authors/readers for more resources

The anchoring effect on free-base carboxyphenyl porphyrin films using TiO2 microstructured columns as a host matrix and its influence on NO2 sensing have been studied in this work. Three porphyrins have been used: 5-(4-carboxyphenyl)10,15,20-triphenyl-21H,23H-porphyrin (MCTPP); 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphyrin (p-TCPP); and 5,10,15,20-tetrakis(3-carboxyphenyl)-21H,23H-porphyrin (m-TCPP). The analysis of UV-Vis spectra of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 composite films has revealed that m-TCPP/TiO2 films are the most stable, showing less aggregation than the other porphyrins. IR spectroscopy has shown that m-TCPP is bound to TiO2 through its four carboxylic acid groups, while p-TCPP is anchored by only one or two of these groups. MCTPP can only be bound by one carboxylic acid. Consequently, the binding of p-TCPP and MCTPP to the substrate allows them to form aggregates, whereas the more fixed anchoring of m-TCPP reduces this effect. The exposure of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 films to NO2 has resulted in important changes in their UV-Vis spectra, revealing good sensing capabilities in all cases. The improved stability of films made with m-TCPP suggests this molecule as the best candidate among our set of porphyrins for the fabrication of NO2 sensors. Moreover, their concentration-dependent responses upon exposure to low concentrations of NO2 confirm the potential of m-TCPP as a NO2 sensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

A Holistic Solution to Icing by Acoustic Waves: De-Icing, Active Anti-Icing, Sensing with Piezoelectric Crystals, and Synergy with Thin Film Passive Anti-Icing Solutions

Jaime del Moral, Laura Montes, Victor Joaquin Rico-Gavira, Carmen Lopez-Santos, Stefan Jacob, Manuel Oliva-Ramirez, Jorge Gil-Rostra, Armaghan Fakhfouri, Shilpi Pandey, Miguel Gonzalez del Val, Julio Mora, Paloma Garcia-Gallego, Pablo Francisco Ibanez-Ibanez, Miguel Angel Rodriguez-Valverde, Andreas Winkler, Ana Borras, Agustin Rodriguez Gonzalez-Elipe

Summary: The use of acoustic waves for de-icing and anti-icing purposes shows promising potential, as it provides a synergistic effect when combined with surface modifications. Experiments conducted in laboratory and icing wind tunnel settings demonstrate the real-time monitoring capabilities of acoustic wave devices in icing processes.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Biochemistry & Molecular Biology

Selective Determination of Glutathione Using a Highly Emissive Fluorescent Probe Based on a Pyrrolidine-Fused Chlorin

Francisco G. Moscoso, Carla Queiros, Paula Gonzalez, Tania Lopes-Costa, Ana M. G. Silva, Jose M. Pedrosa

Summary: We have developed a carboxylated pyrrolidine-fused chlorin as a fluorescent probe for the determination of glutathione. This stable and highly emissive molecule can be easily obtained from a porphyrin through a cycloaddition approach. The fluorescence of the probe is quenched by Hg(II) ions, but a significant fluorescence turn-on is observed in the presence of low concentrations of GSH. The sensing molecule exhibited selectivity and a low detection limit under physiological conditions.

MOLECULES (2023)

Article Chemistry, Analytical

Colorimetric Gas Detection Using Molecular Devices and an RGB Sensor

Javier Roales, Francisco G. G. Moscoso, Alejandro P. P. Vargas, Tania Lopes-Costa, Jose M. Pedrosa

Summary: We propose a low-cost and portable color measuring device that can provide similar results to laboratory spectrophotometers. The prototype is based on an RGB color sensor connected to a Raspberry Pi and mounted on custom sample holders for reflectance or transmittance measurements. The device was able to accurately monitor the color change of sensing devices when exposed to analytes and showed versatility in measuring samples with different characteristics.

CHEMOSENSORS (2023)

Article Nanoscience & Nanotechnology

Photoelectrochemical Water Splitting with ITO/WO3/BiVO4/CoPi Multishell Nanotubes Enabled by a Vacuum and Plasma Soft- Template Synthesis

Jorge Gil-Rostra, Javier Castillo-Seoane, Qian Guo, Ana Belen Jorge Sobrido, Agustin R. Gonzalez-Elipe, Ana Borras

Summary: This work proposes a new architecture of photoelectrodes consisting of supported multishell nanotubes fabricated by a soft-template approach. The obtained NT electrodes have a large electrochemically active surface and outperform the efficiency of equivalent planar-layered electrodes by more than one order of magnitude. The characteristics of the WO3/BiVO4 Schottky barrier heterojunction control the NT electrode efficiency, which depends on the BiVO4 outer layer thickness and the incorporation of the CoPi electrocatalyst, as demonstrated by thorough electrochemical analysis.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Strontium/zinc phytate-based self-assembled monolayers on titanium surfaces enhance osteogenesis and antibacterial performance in vitro

Gerardo Asensio, Ana M. Hernandez-Arriaga, Marcela Martin-del-Campo, M. Auxiliadora Prieto, Agustin R. Gonzalez-Elipe, Luis Rojo, Blanca Vazquez-Lasa

Summary: The accumulation of bacteria over implant surfaces is the main cause of failure, and the development of antimicrobial surfaces is crucial. Additionally, the durability and mechanical performance of implants are determined by their osseointegration capacity and infection prevention. Therefore, bioactive surfaces are being researched to improve implant osseointegration and infection prophylaxis.

APPLIED SURFACE SCIENCE (2023)

Article Nanoscience & Nanotechnology

Low temperature nucleation of thermochromic VO2 crystal domains in nanocolumnar porous thin films

A. M. Alcaide, G. Regodon, F. J. Ferrer, V Rico, R. Alvarez, T. C. Rojas, A. R. Gonzalez-Elipe, A. Palmero

Summary: The formation of monoclinic VO2 crystal domains at low temperatures in nanocolumnar vanadium/oxygen thin films deposited via magnetron sputtering is analyzed. The synthesis involved depositing amorphous nanocolumnar VO1.9 thin films at room temperature and annealing them at temperatures between 250 - 330 ? in an oxygen atmosphere. The nanocolumnar structures exhibited a thermochromic transition at 47 ? (for annealing at 270 ?) and 58 ? (for annealing at 280 and 290 ?), resulting in a significant drop in optical transmittance in the infrared region.

NANOTECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Incorporation of a Metal Catalyst for the Ammonia Synthesis in a Ferroelectric Packed-Bed Plasma Reactor: Does It Really Matter?

Paula Navascues, Juan Garrido-Garcia, Jose Cotrino, Agustin R. Gonzalez-Elipe, Ana Gomez-Ramirez

Summary: This study investigates the synthesis of ammonia using plasma-catalysis and examines the role of various catalyst materials. The results show that while ruthenium particles have some catalytic activity under certain conditions, they do not significantly improve the yield and energy efficiency of ammonia synthesis. The ferroelectric material and the alumina coating play important roles in regulating discharge and cooling the plasma, respectively.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Materials Science, Multidisciplinary

Structure and Void Connectivity in Nanocolumnar Thin Films Grown by Magnetron Sputtering at Oblique Angles

Rafael Alvarez, Guillermo Regodon, Hiedra Acosta-Rivera, Victor Rico, German Alcala, Agustin R. Gonzalez-Elipe, Alberto Palmero

Summary: This paper studied the morphology and void connectivity of thin films grown by magnetron sputtering deposition at oblique geometries. A well-tested thin film growth model was used, along with experimental data, to assess the features of these layers. The film morphology and pore topology varied significantly with the growth conditions, which were linked to the different collisional transport of sputtered species in the plasma gas. Four different film morphologies were identified, and their porous network characteristics were described, explaining their potential applications in electrochromic sensors or infiltration with nanoparticles.

COATINGS (2023)

Article Materials Science, Multidisciplinary

Surface Acoustic Waves Equip Materials with Active De-Icing Functionality: Unraveled Glaze Ice De-Icing Mechanisms and Application to Centimeter-Scale Transparent Surfaces

Stefan Jacob, Shilpi Pandey, Jaime Del Moral, Atefeh Karimzadeh, Jorge Gil-Rostra, Agustin R. Gonzalez-Elipe, Ana Borras, Andreas Winkler

Summary: This study successfully demonstrates the de-icing functionality of large areas covered with thick layers of glaze ice using nanoscale activation by surface acoustic waves. The method shows potential for practical applications in various industries.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Nanoscience & Nanotechnology

Improved strain engineering of 2D materials by adamantane plasma polymer encapsulation

Felix Carrascoso, Hao Li, Jose M. Obrero-Perez, Francisco J. Aparicio, Ana Borras, Joshua O. Island, Angel Barranco, Andres Castellanos-Gomez

Summary: By using an adamantane plasma polymer pinning layer, we achieve unprecedented crystal strains of 2.8% in monolayer molybdenum disulfide. The strain gauge factors for the A and B excitons of monolayer MoS2 are reported as -99.5 meV/% and -63.5 meV/%, respectively, with a 50 nm adamantane capping layer. Photoluminescence and Raman measurements on the same samples confirm these results. Overall, our study demonstrates that adamantane polymer is an exceptional capping layer for transferring substrate-induced strain to a 2D layer and achieving higher levels of crystal strain.

NPJ 2D MATERIALS AND APPLICATIONS (2023)

Article Chemistry, Multidisciplinary

Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+and its incorporation into PDMS films for selective sulfide optical sensing

F. G. Moscoso, L. M. Rodriguez-Albelo, A. R. Ruiz-Salvador, Tania Lopes-Costa, J. M. Pedrosa

MATERIALS TODAY CHEMISTRY (2023)

Article Materials Science, Multidisciplinary

Plasmas and acoustic waves to pattern the nanostructure and chemistry of thin films

V. Rico, G. F. Regodon, A. Garcia-Valenzuela, A. M. Alcaide, M. Oliva-Ramirez, T. C. Rojas, R. Alvarez, F. J. Palomares, A. Palmero, A. R. Gonzalez-Elipe

Summary: In this study, a novel methodology of plasma-assisted thin film structuration was proposed by combining piezoelectric AWs and plasmas during the growth of a thin film. SiO2 and SiOx (x<2) thin films were deposited by magnetron sputtering at oblique angles (MS-OAD) on an electro-acoustically excited LiNbO3 piezoelectric substrate under resonant conditions. The resulting films exhibited 2D patterned microstructure with submillimeter size intermingled zones, which replicated the distribution of polarization potential on the AW activated substrate immersed in the plasma. The main mechanism responsible for the appearance of domains with different morphology and chemical composition was found to be the focused impingement of Ar+ plasma ions on certain regions of the substrate. The discussed the general character of this patterning process, the underlying physics, and its possibilities to tailor the composition and microstructure of dielectric thin film materials.

ACTA MATERIALIA (2023)

No Data Available