4.4 Article

A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan

Journal

MONTHLY WEATHER REVIEW
Volume 136, Issue 2, Pages 598-615

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007MWR2134.1

Keywords

-

Ask authors/readers for more resources

A series of numerical simulations are conducted using the advanced research version of the Weather Research and Forecasting model with a 4-km fine mesh to examine the physical processes responsible for the significant track deflection and looping motion before the landfall of Supertyphoon Haitang ( 2005) in Taiwan, which poses a unique scientific and forecasting issue. In the control experiment, a low-level northerly jet induced by the channeling effect forms in the western quadrant of the approaching storm, where the inner-core circulation is constrained by the presence of Taiwan's terrain. Because of the channeling effect, the strongest winds of the storm are shifted to the western portion of the eyewall. The northerly advection flow ( averaged asymmetric winds within 100-km radius) results in a sharp southward turn of the westward-moving storm. The time series of the advection flow shows that the advection wind vectors rotate cyclonically in time and well match the motion of the simulated vortex during the looping process. A sensitivity study of lowering the Taiwan terrain elevations to 70% or 40% of those in the control experiment reduces the southward track deflection and loop amplitude. The experiment with the reduced elevation to 10% of the control experiment does not show a looping track and thus demonstrates the key role of the terrain-induced channeling effect. Experiments applying different values of the structure parameter alpha illustrate that increasing the strength, size, and translation speed of the initial storm results in a smaller interaction with Taiwan's terrain and a smaller average steering flow caused by the asymmetric circulation, which leads to a proportionally smaller southward track deflection without making a loop.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available