4.5 Article

An Epilepsy-Related Region in the GABA(A) Receptor Mediates Long-Distance Effects on GABA and Benzodiazepine Binding Sites

Journal

MOLECULAR PHARMACOLOGY
Volume 77, Issue 1, Pages 35-45

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.109.058289

Keywords

-

Funding

  1. National Institutes of Health National Institute of Neurological Disorders and Stroke [NS046378]
  2. American Epilepsy Society
  3. Lennox Trust
  4. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS046378] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The GABA(A) receptor mutation gamma(2)R43Q causes absence epilepsy in humans. Homology modeling suggests that gamma(2)Arg43, gamma(2)Glu178, and beta(2)Arg117 participate in a salt-bridge network linking the gamma(2) and beta(2) subunits. Here we show that several mutations at these locations exert similar long-distance effects on other intersubunit interfaces involved in GABA and benzodiazepine binding. These mutations alter GABA-evoked receptor kinetics by slowing deactivation, enhancing desensitization, or both. Kinetic modeling and nonstationary noise analysis for gamma(2)R43Q reveal that these effects are due to slowed GABA unbinding and slowed recovery from desensitization. Both gamma(2)R43Q and beta(2)R117K also speed diazepam dissociation from the receptor's benzodiazepine binding interface, as assayed by the rate of decay of diazepam-induced potentiation of GABA-evoked currents. These data demonstrate that gamma(2)Arg43 and beta(2)Arg117 similarly regulate the stability of both the GABA and benzodiazepine binding sites at the distant beta/alpha and alpha/gamma inter-subunit interfaces, respectively. A simple explanation for these results is that gamma(2)Arg43 and beta(2)Arg117 participate in interactions between the gamma(2) and beta(2) subunits, disruptions of which alter the neighboring intersubunit binding sites in a similar fashion. In addition, gamma(2)Arg43 and gamma(2)Glu178 regulate desensitization, probably mediated within the transmembrane domains near the pore. Therefore, mutations at the gamma/beta intersubunit interface have specific long-distance effects that are propagated widely throughout the GABA(A) receptor protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available