4.6 Article

The Upregulation of NR2A-Containing N-Methyl-D-Aspartate Receptor Function by Tyrosine Phosphorylation of Postsynaptic Density 95 Via Facilitating Src/Proline-Rich Tyrosine Kinase 2 Activation

Journal

MOLECULAR NEUROBIOLOGY
Volume 51, Issue 2, Pages 500-511

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12035-014-8796-4

Keywords

Long-term potentiation; N-methyl-D-aspartate receptors; Postsynaptic density 95; Proline-rich tyrosine kinase 2; Src; Tyrosine phosphorylation

Categories

Funding

  1. National Natural Science Foundation of China [81173030]
  2. Major Basic Research Project of Jiangsu Higher Education Institutions [11KJA310005]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. Jiangsu Qinglan Project for Innovation Team

Ask authors/readers for more resources

The activation of postsynaptic N-methyl-d-aspartate (NMDA) receptors is required for long-term potentiation (LTP) of synaptic transmission. Postsynaptic density 95 (PSD-95) serves as a scaffold protein that tethers NMDA receptor subunits, kinases, and signal molecules. Our previous study proves that PSD-95 is a substrate of Src/Fyn and identifies Y523 on PSD-95 as a principal phosphorylation site. In this paper, we try to define an involvement and molecular consequences of PSD-95 phosphorylation by Src in NMDA receptor regulation. We found that either NMDA or chemical LTP induction leads to rapid phosphorylation of PSD-95 by Src in cultured cortical neurons. The phosphorylation of Y523 on PSD-95 potentiates NR2A-containing NMDA receptor current amplitude, implying an important role of Src-mediated PSD-95 phosphorylation in NMDA receptor activation. Comparing to wild-type PSD-95, overexpression of nonphosphorylatable mutant PSD-95Y523F attenuated the NMDA-stimulated NR2A tyrosine phosphorylation that enhances electrophysiological responses of NMDA receptor channels, while did not affect the membrane localization of NR2A subunits. PSD-95Y523D, a phosphomimetic mutant of PSD-95, induced NR2A tyrosine phosphorylation even if there was no NMDA treatment. In addition, the deficiency of Y523 phosphorylation on PSD-95 impaired the facilitatory effect of PSD-95 on the activation of Src and proline-rich tyrosine kinase 2 (Pyk2) and decreased the binding of Pyk2 with PSD-95. These results indicate that PSD-95 phosphorylation by Src facilitates the integration of Pyk2 to PSD-95 signal complex, the activation of Pyk2/Src, as well as the subsequent tyrosine phosphorylation of NR2A, which ultimately results in the upregulation of NMDA receptor function and synaptic transmission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available