4.5 Article

Low-molecular-weight thiol-dependent antioxidant and antinitrosative defences in Salmonella pathogenesis

Journal

MOLECULAR MICROBIOLOGY
Volume 87, Issue 3, Pages 609-622

Publisher

WILEY
DOI: 10.1111/mmi.12119

Keywords

-

Funding

  1. National Institutes of Health [AI54959]
  2. VA Merit Award [IO1 BX002073]
  3. Burroughs Wellcome Fund
  4. Institutional Training Grant [T32AI052066]

Ask authors/readers for more resources

We found herein that the intracytoplasmic pool of the low-molecular-weight (LMW) thiol glutathione (GSH) is readily oxidized in Salmonella exposed to nitric oxide (NO). The hypersusceptibility of gshA and gshB mutants lacking ?-glutamylcysteine and glutathione synthetases to NO and S-nitrosoglutathione indicates that GSH antagonizes the bacteriostatic activity of reactive nitrogen species. Metabolites of the GSH biosynthetic pathway do not affect the enzymatic activity of classical NO targets such as quinol oxidases. In contrast, LMW thiols diminish the nitrosative stress experienced by enzymes, such as glutamine oxoglutarate amidotransferase, that contain redox active cysteines. LMW thiols also preserve the transcription of Salmonella pathogenicity island 2 gene targets from the inhibitory activity of nitrogen oxides. These findings are consistent with the idea that GSH scavenges reactive nitrogen species (RNS) other than NO. Compared with the adaptive response afforded by inducible systems such as the hmp-encoded flavohaemoprotein, gshA, encoding the first step of GSH biosynthesis, is constitutively expressed in Salmonella. An acute model of salmonellosis has revealed that the antioxidant and antinitrosative properties associated with the GSH biosynthetic pathway represent a first line of Salmonella resistance against reactive oxygen and nitrogen species engendered in the context of a functional NRAMP1R divalent metal transporter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available