4.7 Article

Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae)

Journal

MOLECULAR ECOLOGY
Volume 18, Issue 17, Pages 3668-3682

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2009.04298.x

Keywords

amplified fragment length polymorphism; chloroplast intergenic spacer regions; flow cytometry; phylogeography; South America; Tierra del Fuego

Funding

  1. Spanish Fundacion BBVA [BIOCON 04]
  2. Austrian Science Fund [P18446]
  3. Spanish Ministerio de Educacion y Ciencia
  4. European Social Fund
  5. CONICET (Argentina)

Ask authors/readers for more resources

We report the phylogeographic pattern of the Patagonian and Subantarctic plant Hypochaeris incana endemic to southeastern South America. We applied amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) analysis to 28 and 32 populations, respectively, throughout its distributional range and assessed ploidy levels using flow cytometry. While cpDNA data suggest repeated or simultaneous parallel colonization of Patagonia and Tierra del Fuego by several haplotypes and/or hybridization, AFLPs reveal three clusters corresponding to geographic regions. The central and northern Patagonian clusters (similar to 38-51 degrees S), which are closer to the outgroup, contain mainly tetraploid, isolated and highly differentiated populations with low genetic diversity. To the contrary, the southern Patagonian and Fuegian cluster (similar to 51-55 degrees S) contains mainly diploid populations with high genetic diversity and connected by high levels of gene flow. The data suggest that H. incana originated at the diploid level in central or northern Patagonia, from where it migrated south. All three areas, northern, central and southern, have similar levels of rare and private AFLP bands, suggesting that all three served as refugia for H. incana during glacial times. In southern Patagonia and Tierra del Fuego, the species seems to have expanded its populational system in postglacial times, when the climate became warmer and more humid. In central and northern Patagonia, the populations seem to have become restricted to favourable sites with increasing temperature and decreasing moisture and there was a parallel replacement of diploids by tetraploids in local populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available