4.5 Article

Tumor Cell-Derived MMP3 Orchestrates Rac1b and Tissue Alterations That Promote Pancreatic Adenocarcinoma

Journal

MOLECULAR CANCER RESEARCH
Volume 12, Issue 10, Pages 1430-1439

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-13-0557-T

Keywords

-

Funding

  1. NCI [CA122086, CA154387, R01CA159222, R01CA136754]
  2. Mayo Clinic SPORE in Pancreatic Cancer [P50 CA102701]

Ask authors/readers for more resources

Pancreatic ductal adenocarcinoma (PDA) arises at the convergence of genetic alterations in KRAS with a fostering microenvironment shaped by immune cell influx and fibrotic changes; identification of the earliest tumorigenic molecular mediators evokes the proverbial chicken and egg problem. Matrix metalloproteinases (MMP) are key drivers of tumor progression that originate primarily from stromal cells activated by the developing tumor. Here, MMP3, known to be expressed in PDA, was found to be associated with expression of Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer. Using a large cohort of human PDA tissue biopsies specimens, both MMP3 and Rac1b are expressed in PDA cells, that the expression levels of the two markers are highly correlated, and that the subcellular distribution of Rac1b in PDA is significantly associated with patient outcome. Using transgenic mouse models, coexpression of MMP3 with activated KRAS in pancreatic acinar cells stimulates metaplasia and immune cell infiltration, priming the stromal microenvironment for early tumor development. Finally, exposure of cultured pancreatic cancer cells to recombinant MMP3 stimulates expression of Rac1b, increases cellular invasiveness, and activation of tumorigenic transcriptional profiles. (C) 2014 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available