4.5 Article

Mir-218 contributes to the transformation of 5-Aza/GF induced umbilical cord mesenchymal stem cells into hematopoietic cells through the MITF pathway

Journal

MOLECULAR BIOLOGY REPORTS
Volume 41, Issue 7, Pages 4803-4816

Publisher

SPRINGER
DOI: 10.1007/s11033-014-3351-y

Keywords

Human umbilical cord-derived mesenchymal stem cells; MiR-218; MITF; Hematopoietic cells

Funding

  1. National Key Basic Research and Development Project (Beijing, China) [2011CB965101]

Ask authors/readers for more resources

Experiments with 5'-azacytidine and hematopoietic growth factor approved for the transformation of human mesenchymal cells into hematopoietic cells have demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cells. Here, we demonstrate that umbilical cord-derived human mesenchymal stem cells (uMSC) are easily accessible and could be induced into cells with hematopoietic function. Furthermore, we focused on the crucial miRNAs and relative transcription factors (TFs) in our study. We show that combined Aza/GF incubation can increase expression of miR-218, miR-150, and miR-451. Accordingly, miR-218 overexpression achieved an increase in expression of CD34 (3-13 %), CD45 (50-65 %), CD133 and c-Kit in uMSCs that cultured with Aza/GF. The expression of the relevant transcriptional factors, such as HoxB4 and NF-Ya, was higher than in the negative control group or miR-218 inhibitor transfected group, and microphthalmia-associated transcription factor (MITF) is regarded to be a direct target of miR-218, as demonstrated by luciferase assays. Overexpression of miR-218 might, in conjunction with the MITF, upregulate the expression of NF-Ya and HoxB4, which induce a hematopoietic state. We concluded that miR-218 might have a role in the transformation of hematopoietic cells through the MITF pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available