4.4 Article

The Interferon-γ-induced Murine Guanylate-Binding Protein-2 Inhibits Rac Activation during Cell Spreading on Fibronectin and after Platelet-derived Growth Factor Treatment: Role for Phosphatidylinositol 3-Kinase

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 21, Issue 14, Pages 2514-2528

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E09-04-0344

Keywords

-

Categories

Funding

  1. American Cancer Society [RPG-CIM-88031]

Ask authors/readers for more resources

Exposure of cells to certain cytokines can alter how these same cells respond to later cues from other agents, such as extracellular matrix or growth factors. Interferon (IFN)-gamma pre-exposure inhibits the spreading of fibroblasts on fibronectin. Expression of the IFN-gamma-induced GTPase murine guanylate-binding protein-2 (mGBP-2) can phenocopy this inhibition and small interfering RNA knockdown of mGBP-2 prevents IFN-gamma-mediated inhibition of cell spreading. Either IFN-gamma treatment or mGBP-2 expression inhibits Rac activation during cell spreading. Rac is required for cell spreading. mGBP-2 also inhibits the activation of Akt during cell spreading on fibronectin. mGBP-2 is incorporated into a protein complex containing the catalytic subunit of phosphatidylinositol 3-kinase (PI3-K), p110. The association of mGBP-2 with p110 seems important for the inhibition of cell spreading because S52N mGBP-2, which does not incorporate into the protein complex with p110, is unable to inhibit cell spreading. PI3-K activation during cell spreading on fibronectin was inhibited in the presence of mGBP-2. Both IFN-gamma and mGBP-2 also inhibit cell spreading initiated by platelet-derived growth factor treatment, which is also accompanied by inhibition of Rac activation by mGBP-2. This is the first report of a novel mechanism by which IFN-gamma can alter how cells respond to subsequent extracellular signals, by the induction of mGBP-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available