4.4 Article

Role of Rap1B and Tumor Suppressor PTEN in the Negative Regulation of Lysophosphatidic Acid-induced Migration by Isoproterenol in Glioma Cells

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 20, Issue 24, Pages 5156-5165

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E09-08-0692

Keywords

-

Categories

Funding

  1. Japan Society for the Promotion of Science
  2. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  3. Takeda Science Foundation

Ask authors/readers for more resources

The clarification of mechanisms that negatively regulate the invasive behavior of human glioma cells is of great importance in order to find new methods of treatment. In this study, we have focused on the negative regulation of lysophosphatidic acid (LPA)-induced migration in glioma cells. Using small interference RNA and dominant-negative gene strategies in addition to pharmacological tools, we found that isoproterenol (ISO) and sphingosine-1-phosphate (S1P) negatively but differently regulate the LPA-induced migration. ISO-induced suppression of the migration of glioma cells occurs via beta(2)-adrenergic receptor/cAMP/Epac/Rap1B/inhibition of Rac, whereas S1P has been shown to suppress the migration of the cells through S1P(2) receptor/ Rho-mediated down-regulation of Rac1. The expression of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is required for the inhibitory ISO-induced and Rap1B-mediated actions on the migration, Rac1 activation, and Akt activation in response to LPA. Thus, the PTEN-mediated down-regulation of phosphatidylinositol 3-kinase activity may be involved in the regulation of Rap1B-dependent inhibition of Rac1 activity. These findings suggest that there are at least two distinct inhibitory pathways, which are mediated by the S1P(2) receptor and beta(2)-adrenergic receptor, to control the migratory, hence invasive, behavior of glioma cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available