4.3 Article

Increased expression of the beta3 subunit of voltage-gated Na plus channels in the spinal cord of the SOD1G93A mouse

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 47, Issue 2, Pages 108-118

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2011.03.005

Keywords

Amyotrophic lateral sclerosis; Cu,Zn superoxide dismutase (SOD1) mouse; Voltage-gated Na plus channel; Beta3 Na+ channel subunit; Spinal motor neurons; Laser-capture microdissection

Categories

Funding

  1. Compagnia San Paolo [4932]

Ask authors/readers for more resources

Amyotrophic lateral sclerosis (ALS) is an adult-onset disease characterized by the progressive degeneration of motoneurons (MNs). Altered electrical properties have been described in familial and sporadic ALS patients. Cortical and spinal neurons cultured from the mutant Cu,Zn superoxide dismutase 1 (SOD1G93A) mouse, a murine model of ALS, exhibit a marked increase in the persistent Na+ currents. Here, we investigated the effects of the SOD1G93A mutation on the expression of the voltage-gated Na+ channel alpha subunit SCN8A (Nav1.6) and the beta subunits SCN1B (beta1), SCN2B (beta2), and SCN3B (beta3) in MNs of the spinal cord in presymptomatic (P75) and symptomatic (P120) mice. We observed a significant increase, within lamina IX, of the beta3 transcript and protein expression. On the other hand, the beta1 transcript was significantly decreased, in the same area, at the symptomatic stage, while the beta2 transcript levels were unaltered. The SCN8A transcript was significantly decreased at P120 in the whole spinal cord. These data suggest that the SOD1G93A mutation alters voltage-gated Na+ channel subunit expression. Moreover, the increased expression of the beta3 subunit support the hypothesis that altered persistent Na+ currents contribute to the hyperexcitability observed in the ALS-affected MNs. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available