4.6 Article

Therapeutic effects of stem cell on hyperglycemia, hyperlipidemia, and oxidative stress in alloxan-treated rats

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 391, Issue 1-2, Pages 193-200

Publisher

SPRINGER
DOI: 10.1007/s11010-014-2002-x

Keywords

Mesenchymal stem cell; Alloxan; Oxidative stress; Diabetes mellitus; Hyperlipidemia

Categories

Ask authors/readers for more resources

Diabetes mellitus is the most common endocrine disorder that affects more than 285 million people worldwide. The purpose of this study was to investigate the effect of mesenchymal stem cells (MSCs) from the bone marrow of albino rats, on hyperglycemia, hyperlipidemia, and oxidative stress induced by intraperitoneal injection (i.p.) of alloxan at a dose of 150 mg/kg in rats. Injection of alloxan into rats resulted in a significant increase in serum glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, and sialic acid level and a significant decrease in serum insulin, high density lipoprotein-cholesterol, vitamin E, and liver glycogen as compared to their corresponding controls. Also, oxidative stress was noticed in pancreatic tissue as evidenced by a significant decrease in glutathione level, superoxide dismutase, glutathione-S-transferase activities, also a significant increase in malondialdehyde and nitric oxide levels when compared to control group. Treatment of diabetic rats with MSCs stem cells significantly prevented these alterations and attenuated alloxan-induced oxidative stress. In conclusion, rat bone marrow harbors cells that have the capacity to differentiate into functional insulin-producing cells capable of controlling hyperglycemia, hyperlipidemia, and oxidative stress in diabetic rats. This may be helpful in the prevention of diabetic complications associated with oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available