4.4 Article Proceedings Paper

A new approach to modeling liquid crystal elastomers using phase field methods

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0965-0393/17/6/064004

Keywords

-

Ask authors/readers for more resources

A phase field modeling framework is developed to quantify domain structure evolution in nematic phase liquid crystal elastomers. A hyperelastic energy function is combined with liquid crystal energy relations to formulate a constitutive model for liquid crystal elastomers that undergo thermo-mechanical loads and finite deformation. A set of balance laws and constitutive relations are defined which lead to coupling behavior when finite deformation is introduced within the energy description. The theoretical framework is implemented numerically using a non-linear finite element phase field modeling approach which couples deformation of the elastomer network with microscopic liquid crystal domain structure evolution. A comparison of monodomain and polydomain behavior is analyzed to illustrate spontaneous deformation and polydomain evolution during heating and mechanical stretching. Many of the essential constitutive relations governing these materials are obtained without the use of explicit phenomenological coupling between the liquid crystals and the host elastomer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available