4.4 Article

Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0965-0393/17/7/075015

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program [2006CB705401]

Ask authors/readers for more resources

The cellular automaton (CA) method coupling fundamental metallurgical principles was used to simulate the initial microstructure and dynamic recrystallization (DRX) of 30Cr2Ni4MoV rotor steel. For the initial microstructure generation, reasonable transformation rules were established based on the thermodynamic mechanism, the activation energy and the curvature-driven mechanism. For the purposes of obtaining the material constants which were used in the CA model for DRX, including initial grain size, nucleation rate, softening parameter and activation energy, the hot deformation characteristics of 30Cr2Ni4MoV rotor steel were investigated by uniaxial hot compression tests on Gleeble-3500 machine. The effect of a wide range of thermomechanical processing parameters (temperature and strain rate) on the nucleation rate, the percentage of DRX and the final grain size were investigated. By comparison of the flow stress-strain curves and the metallographs, it was shown that the CA model coupling fundamental metallurgical principles can accurately simulate the microstructural evolution and the plastic flow behavior for 30Cr2Ni4MoV rotor steel at various deformation parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available