4.4 Article

Droplet-based biochemical assay by magnetic wire manipulation between multiple droplets

Publisher

SPRINGER
DOI: 10.1007/s00542-013-1798-8

Keywords

-

Funding

  1. Nagoya University Global COE Program (COE for Education and Research of Micro-Nano Mechatronics)

Ask authors/readers for more resources

Reaction performance of a droplet-based biochemical assay technique that uses magnetic wires as sample carriers is evaluated. Wires 2.0 mm in length, 0.05 mm in width, and 0.02 mm in thickness are fabricated by chemical etching, introduced into a droplet immersed in oil, and manipulated by the magnetic force of a moving magnet. Alkaline-phosphatase as an enzyme is immobilized on the wire surfaces by applying Au and self-assembled monolayer coatings, and the method's on-chip reaction performance is evaluated. The enzymatic reaction is found to increase linearly as the number of wires and the reaction time increase. Relatively high performance reproducibility for enzymatic reactions is obtained; on average, the reaction absorbance, standard deviation, and coefficient of variance are found to be respectively 1.14, 0.103, and 9.1 %. The conductivity change in a fused droplet is used to evaluate the absolute volume of liquid transferred with the extracted wires and a value of 0.33 mu l is obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available