4.5 Article

Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii

Journal

SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS
Volume 26, Issue 11, Pages 1301-1312

Publisher

WILEY
DOI: 10.1111/sms.12596

Keywords

Central fatigue; voluntary activation; motoneuron excitability; cross education; peripheral fatigue

Categories

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

Exercise-induced fatigue can change motor performance in non-exercised muscles. The objective was to investigate unilateral elbow flexion (EF) fatigue effects on the maximal voluntary force (MVC) and corticospinal excitability of contralateral non-exercised biceps brachii (BB). Transcranial magnetic, transmastoid electrical, and brachial plexus electrical stimulation were used to elicit motor evoked potentials (MEP), cervicomedullary motor evoked potentials (CMEP), and compound muscle action potentials in the contralateral non-exercised BB of 12 participants before and after (i) two bouts of 100-s unilateral EF (fatigue) or (ii) control. Three stimuli were evoked every 1.5s during a series of 6-s isometric EF at 100%, 50%, and 5% of MVC. The non-exercised EF MVC force, electromyographic activity, and voluntary activation were not significantly different between fatigue and control. Non-exercised BB MEP and CMEP amplitudes during 100% MVCs demonstrated significantly higher (P=0.03) and lower values (P=0.01), respectively, after fatigue compared with control. There was no difference between the two conditions for MEP and CMEP amplitudes during 50% and 5% MVCs. Unilateral exercise-induced EF fatigue did not lead to cross-over central fatigue to the contralateral homologous muscle but enhanced the supraspinal responsiveness (MEP/CMEP) of the neural circuitries supplying central commands to non-exercised muscles at higher contraction intensity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available