4.5 Article

Polymer-based microfluidic device for measuring membrane protein activities

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 14, Issue 3-4, Pages 421-429

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-012-1061-0

Keywords

Microfluidic; Fabrication; Polymer; Ion channel; Activity

Funding

  1. EU [ASMENA CP-FP 214666-2]

Ask authors/readers for more resources

Functional assays of membrane proteins are becoming increasingly important, both in research and drug discovery applications. The majority of current assays use the patch-clamp technology to measure the activity of ion channels which are over-expressed in cells. In future, in vitro assay systems will be available, which use reconstituted membrane proteins in free-standing lipid bilayers suspended in nano- or micrometer-sized pores. Such functional assays require (1) expression, purification and reconstitution of the membrane protein of interest, (2) a reliable method for lipid bilayer formation and membrane protein integration, and (3) a sensitive detection system. For practical applications, especially for automation, the reliable and controllable transport of fluids is essential. In order to achieve a stable free-standing lipid bilayer, a pore diameter in the micro- to nanometer range is essential. Novel microfluidic devices were developed by bonding a thick (300 mu m) polyether ether ketone foil, bearing a channel structure, to a thin (12 mu m) foil with a micropore of about 10 mu m diameter and then utilized for the formation of stable, free-standing lipid bilayers within the pore. A bacterial voltage-gated potassium channel is integrated therein by fusion and the ion channel activity detected by voltage clamp.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available