4.7 Article

PNA-based DNA assay with attomolar detection limit based on polygalacturonic acid mediated in-situ deposition of metallic silver on a gold electrode

Journal

MICROCHIMICA ACTA
Volume 182, Issue 1-2, Pages 427-434

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-014-1351-1

Keywords

Electrochemical; DNA; Polysaccharide; Signal amplification; Metallization; Differential pulse voltammetry

Funding

  1. Nanjing University of Science and Technology
  2. National Natural Science [21345002]

Ask authors/readers for more resources

An electrochemical method is described for the ultrasensitive determination of sequence-specific DNA by using polysaccharide-mediated in-situ deposition of metallic silver on a gold electrode. Specifically, a thiolated peptide nucleic acid (PNA) is immobilized on the gold electrode via formation of a self-assembled monolayer. Following hybridization between PNA and target single-stranded DNA (ssDNA), polygalacturonic acid (PGUA) is introduced to the PNA/DNA heteroduplexes via phosphate-zirconium-carboxylate coordination interaction. Next, the vicinal hydroxy groups of the polysaccharide backbone are cleaved and oxidized into aldehyde groups. These act as reductants and convert added silver ions into metallic silver which in-situ deposits on the gold electrode, and then is stripped off electrochemically into a solution of KCl where it is accurately determined by differential pulse voltammetry. Under optimal conditions, this assay exhibits a wide linear response range in that the stripping current is related to the logarithm of the concentration of target ssDNA in the 0.1 fM to 10 pM range, with a detection limit as low as 2.5 aM. The method displays excellent specificity in clearly differentiating mismatched oligonucleotide fragments. We therefore believe that this method has a large potential in terms of genotyping of single-nucleotide polymorphism. Moreover, this kind of signal amplification possesses a very large capability with respect to ultrasensitive quantitation of low-abundant biomarkers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available