4.7 Article

Preconcentration and in-situ photoreduction of trace selenium using TiO2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry

Journal

MICROCHIMICA ACTA
Volume 181, Issue 1-2, Pages 197-204

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-013-1101-9

Keywords

Pre-concentration; Nano-TiO2; Atomic fluorescence spectrometry; Selenium; Photochemical vapor generation

Funding

  1. National Natural Science Foundation of China [21075085]
  2. Ministry of Education of China
  3. Department of Science and Technology of Chengdu City [NCET-11-0361, 11DXYB153SF]

Ask authors/readers for more resources

We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L-1, the precision is better than 4.5 % (at a level of 0.1 mu g L-1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available