4.2 Article

Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression

Journal

MICROBIOLOGY-SGM
Volume 159, Issue -, Pages 58-67

Publisher

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/mic.0.059063-0

Keywords

-

Categories

Funding

  1. National Institutes of Allergy and Infectious Diseases [AI080923]
  2. Atlanta Chapter of the Achievement Rewards for College Scientists (ARCS) Foundation, Inc.

Ask authors/readers for more resources

Flagellar biogenesis in the gastric pathogen Helicobacter pylori involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the Sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in flhA, which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the H. pylori strain used, insertion mutations in flhA had different effects on expression of RpoN-dependent genes. Mutations in flhA in H. pylori strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (Delta flhA), or within the gene following codon 77 (designated flhA77) or codon 454 (designated flhA454), which could allow expression of truncated FlhA proteins. All three flhA mutations severely inhibited transcription of the RpoN-dependent genes flaB and flgE in H. pylori B128. In contrast, levels of flaB and flgE transcripts in H. pylori ATCC 43504 bearing either flhA77 or flhA454, but not Delta flhA, were similar to 60 % of wild-type levels. The FlhA(454) variant was detected in membrane fractions prepared from H. pylori ATCC 43504 but not H. pylori B128, which may account for the phenotypic differences in the flhA mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an flaB'-'xylE reporter gene in H. pylori ATCC 43504 bearing the flhA77 allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of flaB is not only regulated at the level of transcription but also regulated post-transcriptionally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available