4.4 Article

Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells

Journal

METALLOMICS
Volume 5, Issue 1, Pages 52-61

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2mt20176c

Keywords

-

Funding

  1. National Institutes of Health [GM067169]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available