4.5 Article

Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry

Journal

METABOLIC BRAIN DISEASE
Volume 29, Issue 4, Pages 1083-1093

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11011-014-9541-4

Keywords

Calcium; Alzheimer's disease; Mitochondria; Endoplasmic reticulum; Oxidants; Capacitative calcium entry; IP3; Fibroblasts

Funding

  1. Burke Medical Research Institute
  2. [AG14930]
  3. [AG14600]
  4. [AG19589]

Ask authors/readers for more resources

Thiamine dependent enzymes are diminished in Alzheimer's disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactionsmust be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer's Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum(ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (-60 %) or import (-40 %). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP(3), a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20-25 %) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53 %). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP(3), mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP(3)R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca2+ modifies the depletion and refilling mechanism of ER Ca2+ stores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available