4.3 Article

Excess dietary methionine does not affect fracture healing in mice

Journal

MEDICAL SCIENCE MONITOR
Volume 18, Issue 12, Pages BR469-BR474

Publisher

INT SCIENTIFIC LITERATURE, INC
DOI: 10.12659/MSM.883590

Keywords

methionine; homocysteine; fracture healing; mice

Funding

  1. Medical Faculty of the University of Saarland [1000/T201000138 HOMFOR 06/84]

Ask authors/readers for more resources

Background: An elevated serum concentration of homocysteine (hyperhomocysteinemia) has been shown to disturb fracture healing. As the essential amino acid, methionine, is a precursor of homocysteine, we aimed to investigate whether excess methionine intake affects bone repair. Material/Methods: We analyzed bone repair in 2 groups of mice. One group was fed a methionine-rich diet (n=13), and the second group received an equicaloric control diet without methionine supplementation (n=12). Using a closed femoral fracture model, bone repair was analyzed by histomorphometry and biomechanical testing at 4 weeks after fracture. Blood was sampled to measure serum concentrations of homocysteine, the bone formation marker osteocalcin, and the bone resorption marker collagen I C-terminal crosslaps Results: Serum concentrations of homocysteine were significantly higher in the methionine group than in the control group, while serum markers of bone turnover did not differ significantly between the 2 groups. Histomorphometry revealed no significant differences in size and tissue composition of the callus between animals fed the methionine-enriched diet and those receiving the control diet. Accordingly, animals of the 2 groups showed a comparable bending stiffness of the healing bones. Conclusions: We conclude that excess methionine intake causes hyperhomocysteinemia, but does not affect fracture healing in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available