4.6 Article

Multimodality vascular imaging phantoms: A new material for the fabrication of realistic 3D vessel geometries

Journal

MEDICAL PHYSICS
Volume 36, Issue 8, Pages 3758-3763

Publisher

WILEY
DOI: 10.1118/1.3171692

Keywords

angiocardiography; biomedical MRI; biomedical ultrasonics; computerised tomography; diagnostic radiography; phantoms

Funding

  1. Canadian Institutes of Health Research [MOP-53244]
  2. University of Montreal

Ask authors/readers for more resources

Multimodality vascular flow phantoms provide a way of testing the geometric accuracy of clinical scanners and optimizing acquisition protocols with easy reproducibility of experimental conditions. This article presents a stereolithography method combined with a lost-material casting technique that eliminates metal residues of cerrolow (a low temperature melting point metallic alloy) left within irregular vessel lumens after casting. These residues potentially cause image artifacts especially in magnetic resonance angiography or flow disturbance. Geometrical accuracies of constructed lumens with isomalt, the proposed material, ranged from 3.3% to 5.7% for vessel diameters of 1.8-7.9 mm, which are comparable to those of lumens constructed with cerrolow that had better accuracies varying from 1.1% to 4.1% (p < 0.02). Examples of geometries mimicking diseased arteries such as an aorta with stenosed renal arteries and an iliac artery with multiple stenoses are presented. This sugar-based isomalt material, combined with phantom designs having fiducial markers visible in digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and ultrasound [Med. Phys. 31, 1424-1433 (2004)], makes easier the fabrication of complex realistic and accurate replicas of pathological vessels with lumen irregularities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available