4.5 Article

mTOR signaling pathway regulates the IL-12/IL-10 axis in Leishmania donovani infection

Journal

MEDICAL MICROBIOLOGY AND IMMUNOLOGY
Volume 201, Issue 1, Pages 37-46

Publisher

SPRINGER
DOI: 10.1007/s00430-011-0202-5

Keywords

THP-1; L. donovani; PI3K; mTOR; Rapamycin

Funding

  1. Defence Research and Development Organisation (DRDO), Government of India
  2. Council of Scientific and Industrial Research (CSIR), Government of India

Ask authors/readers for more resources

Leishmania-induced interleukin-12 (IL-12) expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal regulated kinase (ERK) 1/2 pathways in human monocyte derived macrophages (MDMs). To extend these studies, we examined the pathways downstream from PI3K in L. donovani-induced reciprocal regulation of IL-12/IL-10 axis in THP-1-derived macrophages. We show for the first time that in THP-1-derived macrophages and human monocytes, mTOR inhibition by rapamycin reversed L. donovani-induced IL-12 and IL-10 modulation. L. donovani-induced phosphorylation of P70S6K, a correlate of mTOR activity, in TLR-stimulated THP-1 derived macrophages. This increase in P70S6K phosphorylation was completely blocked by rapamycin (mTOR inhibitor) and partially by wortmannin (PI3K inhibitor). These observations suggest that a PI3K independent pathway is operative in the modulation of IL-12 and IL-10. Blocking of TLR2 significantly attenuated IL-10 induced by the parasite, but did not affect IL-12 production. Thus, our data suggests that intracellular network of PI3K and mTOR pathway control IL-12/IL-10 modulation by L. donovani. mTOR inhibitors may be attractive molecules to reverse this modulation and may result in control of disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available