4.4 Review

Prosthetic aortic heart valves: Modeling and design

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 33, Issue 2, Pages 131-147

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2010.09.017

Keywords

Mechanical heart valves; Bioprosthetic heart valve; Design of heart valves; Modeling and simulation; Nanocomposite biomaterials

Ask authors/readers for more resources

Although heart valve replacement is among the most common cardiovascular surgical procedures, their outcome is often difficult to predict. One of the reasons is the design and choice of the materials used for the fabrication of the prostheses. This review paper describes the use of modeling techniques in prosthetic heart valve (HV) design and aims at the justification and development of a polymer based trileaflet mechanical heart valve (MHV). The closing/opening phase behavior of the bileafiet MHV was investigated. The potential problem of valve failure due to crack propagation in the brittle pyrolytic carbon leaflet was also discussed. These studies suggest that although bileaflet MHV performs satisfactorily, there are justifications for improvement. Since the native aortic HV is trileaflet and made of anisotropic and hyperelastic tissue, one possible approach to a better MHV design is based on our ability to closely mimic the natural geometry and biomaterial properties. (C) 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available