4.5 Article

Sensor-based cell and tissue screening for personalized cancer chemotherapy

Journal

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Volume 50, Issue 2, Pages 117-126

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-011-0855-7

Keywords

Targeted therapy; Sensor; Cancer tissue; Cell metabolism

Ask authors/readers for more resources

Personalized tumor chemotherapy depends on reliable assay methods, either based on molecular predictive biomarkers or on a direct, functional ex vivo assessment of cellular chemosensitivity. As a member of the latter category, a novel high-content platform is described monitoring human mamma carcinoma explants in real time and label-free before, during and after an ex vivo modeled chemotherapy. Tissue explants are sliced with a vibratome and laid into the microreaction chambers of a 24-well sensor test plate. Within these a parts per thousand 23 mu l volume chambers, sensors for pH and dissolved oxygen record rates of cellular oxygen uptake and extracellular acidification. Robot-controlled fluid system and incubation are parts of the tissue culture maintenance system while an integrated microscope is used for process surveillance. Sliced surgical explants from breast cancerous tissue generate well-detectable ex vivo metabolic activity. Metabolic rates, in particular oxygen consumption rates have a tendency to decrease over time. Nonetheless, the impact of added drugs (doxorubicin, chloroacetaldehyde) is discriminable. Sensor-based platforms should be evaluated in explorative clinical studies for their suitability to support targeted systemic cancer therapy. Throughput is sufficient for testing various drugs in a range of concentrations while the information content obtained from multiparametric real-time analysis is superior to conventional endpoint assays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available