4.5 Article

Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery

Journal

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Volume 49, Issue 8, Pages 891-899

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-010-0727-6

Keywords

Aneurysm; Intracranial aneurysm; Blood flow

Ask authors/readers for more resources

Flow impingement is regarded as a key factor for aneurysm formation and rupture. Wall shear stress (WSS) is often used to evaluate flow impingement even though WSS and impinging force are in two different directions; therefore, this raises an important question of whether using WSS for evaluation of flow impingement size is appropriate. Flow impinging behavior in a patient-specific model of a giant aneurysm (GA) at the internal carotid artery (ICA) was analyzed by computational fluid dynamics simulations. An Impingement Index (IMI) was used to evaluate the timing and size of flow impingement. In theory, the IMI is related to the WSS gradient, which is known to affect vascular biology of endothelial cells. Effect of non-Newtonian fluid, aneurysm size, and heart rate were also studied. Maximum WSS is found to be proportional to the IMI, but the area of high wall shear is not proportional to the size of impingement. A faster heart rate or larger aneurysm does not produce a larger impinging site, and the Newtonian assumption overestimates the size of impingement. Flow impingement at the dome occurs approximately 0.11 s after the peak of flow waveform is attained. This time delay also increases with aneurysm size and varies with heart rate and waveform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available