4.7 Article

Simultaneous removal of elemental mercury and NO from flue gas by V2O5-CeO2/TiO2 catalysts

Journal

APPLIED SURFACE SCIENCE
Volume 347, Issue -, Pages 392-400

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2015.04.039

Keywords

Elemental mercury; Selective catalytic reduction; Multi-pollutants control; Catalytic activity; v(2)O(5)-CeO2/TiO2

Funding

  1. National High Technology Research and Development Program of China (863 Program) [2011AA060803]
  2. National Natural Science Foundation of China [51278177, 51478173]

Ask authors/readers for more resources

A series of Ce-doped V2O5/TiO2 catalysts synthesized by an ultrasound assisted impregnation method were employed to investigate simultaneous removal of elemental mercury (Hg) and NO in lab-scale experiments. Scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray diffractogram (XRD), and X-ray photoelectron spectroscopy (XPS) analyses were used to characterize the samples. Compared to TiO2 support, the catalytic performance of CeO2 doped on both TiO2 and V2O5/TiO2 catalysts have been improved. Remarkably, 1%V2O5-10% CeO2/TiO2 (V1Ce10Ti) exhibited the highest Hg oxidation efficiency of 81.55% at 250 degrees C with a desired NO removal efficiency under the same condition. Both the NO conversion and Hg oxidation efficiency were enhanced in the presence of O-2. The activity was inhibited by the injection of NH3 with the increase of NH3/NO. When in the presence of 400 ppm SO2, Hg oxidation was slightly affected. Furthermore, Hg removal behavior under both oxidation and selective catalytic reduction (SCR) condition over V1Ce10Ti were well investigated to further probe into the feasibility of one single unit for multi-pollutants control in industry application. The existence of the redox cycle of V4+ + Ce4+ <-> V5+ + Ce3+ in V2O5 CeO2/TiO2 catalyst could not only greatly improve the NO conversion, but also promote the oxidation of Hg. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

LaOx modified MnOx loaded biomass activated carbon and its enhanced performance for simultaneous abatement of NO and Hg0

Lei Yi, Jinke Xie, Caiting Li, Jian Shan, Yingyun Liu, Junwen Lv, Mi Li, Lei Gao

Summary: A battery of LaOx modified MnOx activated carbon catalysts were prepared for simultaneous abatement of NO and Hg-0, with 15%LaMn/BAC exhibiting excellent removal efficiency at 180 degrees C. The inhibitory effect of NH3 on Hg-0 removal was found to be greater than the accelerative effect of NO and O-2.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2022)

Article Chemistry, Physical

Mechanism investigation of three-dimensional porous A-site substituted La1-xCoxFeO3 catalysts for simultaneous oxidation of NO and toluene with H2O

Lingkui Zhao, Lu Jiang, Yan Huang, Junfeng Zhang, Jun Tang, Caiting Li

Summary: The study demonstrated that partial substitution of La with Co in LaFeO3 can induce structural distortion, promote specific surface area, enhance active site exposure, and produce more reactive oxygen species, leading to significantly improved catalytic activities. Additionally, NO and toluene have mutual promotion effects in the reaction system, while the presence of H2O inhibits the oxidation of NO and toluene by consuming active oxygen atoms.

APPLIED SURFACE SCIENCE (2022)

Review Environmental Sciences

Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus

Ya Zhu, Yunbo Zhai, Shanhong Li, Xiangmin Liu, Bei Wang, Xiaoping Liu, Yuwei Fan, Haoran Shi, Caiting Li, Yun Zhu

Summary: This paper reviews methods for recovering different forms of phosphorus from solid products obtained from different sludge thermal treatment methods, as well as the bioavailability of the recovered phosphorus products. Incineration of sewage sludge is currently the most established and effective method for recovering phosphorus, while one wet chemical method has been commercialized and is expected to be further developed for industrial applications in the future. Pyrolysis and hydrothermal carbonization still have research gaps, but both have the potential to recover phosphorus and should be further explored based on their principles and laboratory performance.

CHEMOSPHERE (2022)

Article Energy & Fuels

Excellent performance and outstanding resistance to SO2 and H2O for formaldehyde abatement over CoMn oxides boosted dual-precursor hierarchical porous biochars derived from liquidambar and orange peel

Lei Gao, Lei Yi, Jiajie Wang, Xiangyi Li, Zhi Feng, Jian Shan, Yingyun Liu, Wenfa Tan, Qiuhua He, Caiting Li

Summary: This study presents a facile strategy for designing novel carbon-based catalysts for efficient removal of HCHO, combining hierarchical porous carriers and promotional effects to enhance catalytic performance.
Article Chemistry, Physical

Light-driven photothermal catalysis for degradation of toluene on CuO/TiO2 Composite: Dominating photocatalysis and auxiliary thermalcatalysis br

Caixia Liang, Caiting Li, Youcai Zhu, Xueyu Du, Yifu Zeng, Yihui Zhou, Jungang Zhao, Shanhong Li, Xuan Liu, Qi Yu, Yunbo Zhai

Summary: This study investigated the removal of toluene pollution using CuO/TiO2 composites. The composites synthesized by the wet precipitation method showed better performance and durability, with higher light absorption and lower charge recombination. Under ultraviolet-visible light, the light-driven heat significantly increased the removal efficiency, and the addition of infrared light further improved the efficiency. The reduction of carbon deposition greatly improved the photocatalytic performance and stability of the materials.

APPLIED SURFACE SCIENCE (2022)

Review Chemistry, Inorganic & Nuclear

Layered double hydroxides-based materials as novel catalysts for gaseous VOCs abatement: Recent advances and mechanisms

Qi Yu, Caiting Li, Dengsheng Ma, Jungang Zhao, Xuan Liu, Caixia Liang, Youcai Zhu, Ziang Zhang, Kuang Yang

Summary: This paper reviews the recent advances of layered double hydroxides (LDHs)-based materials for the abatement of volatile organic compounds (VOCs), mainly focusing on photocatalytic oxidation and thermal catalytic oxidation. The catalytic performance and intensified mechanisms of various LDHs-based materials are summarized and compared, with a focus on the mechanistic details that lead to varying results. The effect of different gas components on the performance of LDHs-based materials is examined, and the applications of LDHs-based materials for VOCs adsorption, sensing, and steam reforming are discussed. Finally, the current challenges and development strategies for practical applications are outlined.

COORDINATION CHEMISTRY REVIEWS (2022)

Article Thermodynamics

Co-hydrothermal carbonization of rape straw and microalgae: pH-enhanced carbonization process to obtain clean hydrochar

Xiangmin Liu, Yuwei Fan, Yunbo Zhai, Xiaoping Liu, Zhexian Wang, Ya Zhu, Haoran Shi, Caiting Li, Yun Zhu

Summary: This study conducted co-hydrothermal carbonization of rape straw and microalgae to obtain clean hydrochar. The effect of different feedwater pH values on co-HTC and the mechanism of enhanced N, S, and O removal were revealed. Acidic and alkaline conditions in the feedwater exacerbated the carbonization process. The hydrochar formed under acidic conditions had a higher heating value and deamination and deoxidation were the main methods for protein degradation and N, S, and O removal. The results provide insights into the production of hydrochar with improved properties.

ENERGY (2022)

Article Energy & Fuels

Recycle of waste activated coke as an efficient sorbent for Hg0 removal from coal-fired flue gas

Jie Zhang, Caiting Li, Xueyu Du, Shanhong Li, Le Huang

Summary: Recycled desulfurized activated coke can effectively recover Hg0 from coal-fired flue gas with superior removal performance. The generation of surface active oxygen species on activated coke after thermal treatment can enhance the adsorption of Hg0. The deposition of SO42-, oxygen addition, and specific surface area play important roles in the removal of Hg0 by activated coke during regeneration.
Review Chemistry, Multidisciplinary

Recent Progress of Carbon Dots for Air Pollutants Detection and Photocatalytic Removal: Synthesis, Modifications, and Applications

Jungang Zhao, Caiting Li, Xueyu Du, Youcai Zhu, Shanhong Li, Xuan Liu, Caixia Liang, Qi Yu, Le Huang, Kuang Yang

Summary: Rapid industrialization has caused serious air pollution problems, highlighting the need for the development of detection and treatment technologies for efficient removal of harmful pollutants. Functional nanomaterials, specifically carbon dots (CDs), show great potential in sensing and photocatalytic technologies. CDs offer superior properties such as controllable structures, easy surface modification, adjustable energy band, and excellent electron-transfer capacities, making them an environmentally friendly and sustainable option for addressing environmental issues. This article highlights recent advances in CDs-based sensors and photocatalysts, discussing their applications in air pollutants detection and photocatalytic removal, as well as the diverse sensing and photocatalytic mechanisms of CDs. It emphasizes the importance of investigating synthetic mechanisms and designing structures.

SMALL (2022)

Article Chemistry, Multidisciplinary

Simultaneously Enhanced Dewaterability and Biopolymer Release of Sludge by Natural Deep Eutectic Solvents: Performance, Mechanisms, and Insights of Theoretical Calculations

Xiaoping Liu, Yunbo Zhai, Yun Zhu, Zhixiang Xu, Liming Liu, Wanying Ren, Yu Xie, Caiting Li, Min Xu

Summary: By using natural deep eutectic solvents (NADESs) and low-temperature pretreatment, the dewaterability and resource recovery of waste-activated sludge (WAS) can be significantly improved.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2022)

Review Engineering, Environmental

Deciphering exogenous electric field promoting catalysis from the perspectives of electric energy and electron transfer: A review

Ziang Zhang, Caiting Li, Xueyu Du, Youcai Zhu, Le Huang, Kuang Yang, Jungang Zhao, Caixia Liang, Qi Yu, Shanghong Li, Xuan Liu, Yunbo Zhai

Summary: The synergistic system of non-intense electric field incorporated in semiconductor catalysts has gained attention as an advanced method to enhance cryogenic catalytic activity and meet specific reaction requirements. However, the lack of a comprehensive review on the process and mechanism in this research field is addressed in this study. A critical discussion on the classification of exogenous electric field promoting catalysis is provided, along with the construction of a shared mechanism framework. Further research suggestions are also proposed to contribute to the development and commercialization of this technology.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Tunning active oxygen species for boosting Hg0 removal and SO2-resistance of Mn-Fe oxides supported on (NH4)2S2O8 doping activated coke

Xueyu Du, Caiting Li, Jie Zhang, Youcai Zhu, Caixia Liang, Le Huang, Kuang Yang, Chaoliang Yao, Ying Ma

Summary: In this paper, the authors investigated the removal of Hg-0 using modified AC samples with abundant active oxygen species (AOS). The results showed that the treatment with (NH4)2S2O8 increased the microporosity and oxygen-containing functional groups, providing more anchoring sites for the dispersion of MnOx-FeOx. The optimized MnFe/NAC exhibited excellent efficiency for Hg-0 removal, as well as simultaneous removal of Hg-0 and NO.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Engineering, Environmental

Interface engineering of Mn3O4/Co3O4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene

Jungang Zhao, Caiting Li, Qi Yu, Youcai Zhu, Xuan Liu, Shanhong Li, Caixia Liang, Ying Zhang, Le Huang, Kuang Yang, Ziang Zhang, Yunbo Zhai

Summary: Mn3O4/Co3O4 composites with S-scheme heterojunctions were fabricated for photothermal catalytic degradation of toluene under UV-Vis light irradiation. The hetero-interface of Mn3O4/Co3O4 effectively increases the specific surface area and promotes the generation of reactive oxygen species. The presence of a built-in electric field and energy band bending optimizes the photogenerated carriers' transfer path and enhances the removal efficiency of toluene.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Engineering, Chemical

Cobalt-doped cerium dioxide enhances interfacial synergistic catalysis for boosting the oxidation of toluene

Youcai Zhu, Caiting Li, Xuan Liu, Ying Zhang, Kuang Yang, Le Huang, Jungang Zhao, Ziang Zhang

Summary: CoCeOx nanoparticles with different Co/Ce molar ratios were prepared and applied to toluene oxidation. The Co-doped CeO2 improved the catalytic activity through interfacial synergistic effects. CoCeOx-2-NP exhibited the highest toluene conversion activity and CO2 selectivity. Various characterizations were performed to analyze the relationship between the catalysts' structure and performance.

SEPARATION AND PURIFICATION TECHNOLOGY (2024)

Article Engineering, Environmental

Hydrothermal carbonization of petrochemical sludge: The fate of hydrochar and oil components

Xiangmin Liu, Yunbo Zhai, Shanhong Li, Qiuya Niu, Xiaoping Liu, Zhexian Wang, Yali Liu, Zhenzi Qiu, Caiting Li, Yun Zhu, Min Xu

Summary: This study investigates the properties and conversion processes of petrochemical sludge under different hydrothermal carbonization temperatures. The results show that higher temperatures lead to higher organic-dissolved oil content and lower water-soluble oil content. Carbon is mainly preserved in hydrochar and organic-dissolved oil, while nitrogen and sulfur are removed through migration into water-soluble oil.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2022)

Article Chemistry, Physical

Multifunctional continuous solid solution Na0.9Mg0.45Ti3.55O8-Na2Fe2Ti6O16: Preparation, characterization, magnetism, dual absorption, adsorption, and photocatalysis

Qi-Wen Chen, Ze-Qing Guo, Jian-Ping Zhou

Summary: Multifunctional continuous solid solutions NFMTO-x were successfully synthesized via a one-step hydrothermal method by controlling the ratio of Mg and Fe. The NFMTO-x materials exhibited enhanced visible light response, effective adsorption and photocatalytic degradation of organic pollutants, CO2 methanation capability, and easy recyclability due to their magnetic properties. This research provides a significant multifunctional material for water purification.

APPLIED SURFACE SCIENCE (2024)

Review Chemistry, Physical

Critical advances in the field of magnetron sputtered bioactive glass thin-films: An analytical review

George E. Stan, Maziar Montazerian, Adam Shearer, Bryan W. Stuart, Francesco Baino, John C. Mauro, Jose M. F. Ferreira

Summary: Bioactive glasses have the ability to form strong bonds with tissues and release therapeutic ions. However, their biomechanical compatibility limits their use in load-bearing applications. The use of magnetron sputtering technology to fabricate BG coatings shows promise in improving their efficacy and potential for application.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Corrosion mode evaluation of Fe-based glassy alloys with metalloid elements by electrochemical noise (EN)

Zhaoxuan Wang, Zhicheng Yan, Zhigang Qi, Yu Feng, Qi Chen, Ziqi Song, Meng Huang, Peng Jia, Ki Buem Kim, Weimin Wang

Summary: The corrosion behavior of Fe-60 and Fe-83 ribbons in 0.6 M NaCl was studied. Fe-60 exhibited a local corrosion mode and formed a stable passivation film with higher corrosion resistance, while Fe-83 showed a combination of local and global corrosion modes and had lower corrosion resistance. Controlling the precipitation of nanocrystalline phases and increasing the POx content in the passivation film significantly improved the corrosion resistance of Fe-based glassy alloys.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Impacts of Zr content of HfZrOx-Based FeFET memory on resilience towards proton radiation

Hao-Kai Peng, Sheng-Yen Zheng, Wei-Ning Kao, Ting-Chieh Lai, Kai-Sheun Lee, Yung- Hsien Wu

Summary: This study investigates the effects of high energy/fluence proton radiation on the performance of HfZrOx-based FeFETs memory with different Zr content. The results show that the characteristics of FeFETs are influenced by proton radiation, and the extent of the influence depends on the Zr content. FeFETs with 50% Zr content exhibit minimal changes in memory window and demonstrate good endurance and retention performance.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack

Zongyi Yue, Guangyi Wang, Zengguang Huang, Sihua Zhong

Summary: In this study, AZO and ITO films were successfully tuned as excellent passivation layers for c-Si surfaces, achieving effective minority carrier lifetime and outstanding optical properties through the optimization of annealing temperature and interfacial silicon oxide.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Hydrogen sensing capabilities of highly nanoporous black gold films

Martin Hruska, Jan Kejzlar, Jaroslav Otta, Premysl Fitl, Michal Novotny, Jakub Cizek, Oksana Melikhova, Matej Micusik, Peter Machata, Martin Vrnata

Summary: This paper presents a detailed study on the hydrogen sensing capabilities of highly nanoporous black gold films. The films exhibit fast response and recovery times at low temperatures. Different levels of nanoporosity were prepared and tested to investigate the sensing properties, and it was found that nanoporous black gold is suitable for hydrogen sensing. The sensitivity of the film depends on its nanoporosity.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Abnormal stability of hydrogenic defects and magnetism near the HSrCoO2.5(001) surface

Yupu Wang, Gaofeng Teng, Chun To Yiu, Junyi Zhu

Summary: In the study of BM-SCO and HSCO thin films, it was found that H vacancies tend to prefer sites near the external surface or oxygen vacancy channels (OVCs), while H interstitials prefer sites of oxygen on a layer that contains six-fold coordinated Co. These findings not only enrich the understanding of complex surface phenomena of defect formation but also provide an explanation for the reversibility during phase transformation.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Space variant fiber nanogratings induced by femtosecond laser direct writing

Jiafeng Lu, Linping Teng, Qinxiao Zhai, Chunhua Wang, Matthieu Lancry, Ye Dai, Xianglong Zeng

Summary: In this study, we achieved full control of fiber nanograting orientation by manipulating laser polarization, and tailored space variant fiber nanogratings, which expanded the diversity in fiber nanograting engineering.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Wetting mechanisms in the mass transfer process of CuSi3 droplets on the TC4 and 304SS multi-metal system controlled by the hybrid shielding gas atmosphere

Yibo Liu, Yujie Tao, Yue Liu, Qi Sun, Qinrong Lin, Kexin Kang, Qinghua Zhang, Qingjie Sun

Summary: This study investigates the wettability of the Ti-Cu-Fe multi-metal system, specifically the wetting behaviors of CuSi3 droplets on TC4 and 304SS plates. The results show that the CO2 + Ar gas atmosphere significantly affects interfacial mass transfer, thus influencing the wettability of the systems.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Size-regulated Co-doped hetero-interfaced 3D honeycomb MXene as high performance electromagnetic absorber with anti-corrosion performance

Jimei Liu, Fei Wang, Rong Guo, Yuqi Liu, Mengyu Zhang, Jaka Sunarso, Dong Liu

Summary: This study developed Co/MXene composites with anti-corrosion properties by varying the cobalt content. These composites exhibited remarkable electromagnetic absorption performance and high resistance to corrosion under various corrosive conditions. The study also revealed the mechanism of electron transfer from cobalt to MXene and the electromagnetic dissipation behavior originated from polarization loss alone.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Ultrafine Ru nanoparticles on nitrogen-doped CNT arrays for HER: A CVD-based protocol achieving microstructure design and strong catalyst-support interaction

Moujie Huang, Yongsong Ma, Jingbo Yang, Lingyun Xu, Hangqi Yang, Miao Wang, Xin Ma, Xin Xia, Junhao Yang, Deli Wang, Chuang Peng

Summary: Strong metal-support interactions (SMSIs) are important for enhancing catalytic activities and stability in thermal catalysis. This study demonstrates a method to create SMSIs in electrocatalysis using carbon nanotubes and Ru nanoparticles, resulting in excellent catalytic activity and stability.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Novel biphenylene as cisplatin anticancer drug delivery carrier; insight from theoretical perspective

Ravi Trivedi, Brinti Mondal, Nandini Garg, Brahmananda Chakraborty

Summary: This study explores the potential of biphenylene as a nanocarrier for the delivery of the anticancer drug cisplatin. It is found that biphenylene offers physical stability, rapid release rate, solubility, and bio-compatibilities compared to other nanocarriers. The adsorption of cisplatin on the surface of biphenylene involves charge transfer from cisplatin to biphenylene. The drug is shown to be released at body temperature in an acidic environment. Biphenylene also exhibits excellent cytotoxicity activity and cellular uptake of the drug. Overall, biphenylene shows promise as a potential nanocarrier for cisplatin delivery.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Platform for surface-enhanced Raman scattering in layered quantum materials

Hyun Jeong, Hyeong Chan Suh, Ga Hyun Cho, Rafael Salas-Montiel, Hayoung Ko, Ki Kang Kim, Mun Seok Jeong

Summary: In this study, a potential platform to enhance Raman scattering and increase the number of observable Raman modes in monolayer transition metal dichalcogenides (TMDs) was proposed. The platform consisted of large-scale arrays of gold micropillars (MPs), which were able to enhance the Raman intensity of TMDs and make difficult-to-detect Raman modes observable. The platform showed great industrial advantages and wide applicability due to its low cost, simple process, large controllable area, and short process time.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Cyclotriphosphazene (P3N3) derived FeOx@SPNO-C core-shell nanospheres as peroxymonosulfate activator for degradation via non-radical pathway

Yasir Abbas, Shafqat Ali, Sajjad Ali, Waqar Azeem, Zareen Zuhra, Haoliang Wang, Mohamed Bououdina, Zhenzhong Sun

Summary: In this study, FeOx@SPNO-C core-shell nanospheres as a catalyst for degradation of sulfamethoxazole (SMX) were successfully synthesized. The synergistic interaction between FeOx and SPNO-C, high carbon charge density, and the presence of C = O groups and N/Fe-Nx sites were found to be key factors for the enhanced degradation of SMX.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Hierarchical confinement of Prussian blue nanoparticles via NH2-MIL-88B (Fe): Rational design and electrocatalytic application

Qiaoting Yang, Yuxiao Gong, Yan Qian, Zhou-Qing Xiao, Serge Cosnier, Xue-Ji Zhang, Robert S. Marks, Dan Shan

Summary: This study proposes a hierarchical confinement strategy to design Prussian blue nanoparticles (PB NPs) with satisfactory electrocatalytic ability and stability. The catalytic synthesis of PB NPs is achieved through a hydrothermal process, and the as-prepared PB@NH2MIL exhibits efficient electronic transmission and enhanced electrocatalytic properties.

APPLIED SURFACE SCIENCE (2024)