4.3 Article

Mathematical Modelling of Radiative Hydromagnetic Thermosolutal Nanofluid Convection Slip Flow in Saturated Porous Media

Journal

MATHEMATICAL PROBLEMS IN ENGINEERING
Volume 2014, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2014/179172

Keywords

-

Funding

  1. Universiti Sains Malaysia, RU [1001/PMATHS/811252]

Ask authors/readers for more resources

High temperature thermal processing of nanomaterials is an active area of research. Many techniques are being investigated to manipulate properties of nanomaterials for medical implementation. In this paper, we investigate thermal radiation processing of a nanomaterial fluid sheet extruded in porous media. A mathematical model is developed using a Darcy drag force model. Instead of using linear radiative heat flux, the nonlinear radiative heat flux in the Rosseland approximation is taken into account which makes the present study more meaningful and practically useful. Velocity slip and thermal and mass convective boundary conditions are incorporated in the model. The Buongiornio nanofluid model is adopted wherein Brownian motion and thermophoresis effects are present. The boundary layer conservation equations are transformed using appropriate similarity variables and the resulting nonlinear boundary value problem is solved using Maple 14 which uses the Runge-Kutta-Fehlberg fourth fifth order numerical method. Solutions are validated with previous nonmagnetic and nonradiative computations from the literature, demonstrating excellent agreement. The influence of Darcy number, magnetic field parameter, hydrodynamic slip parameter, convection-conduction parameter, convection-diffusion parameter, and conduction-radiation parameter on the dimensionless velocity, temperature, and nanoparticle concentration fields is examined in detail. Interesting patterns of relevance are observed to improve manufacturing of nanofluids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available