4.6 Article

Boron carbonitride sheet/ Cu2O composite for an efficient photocatalytic hydrogen evolution

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 219, Issue -, Pages 204-211

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2018.08.019

Keywords

Photocatalyst; Hydrogen evolution; Visible light; Nanocomposite; Boron carbonitride/Cu-2

Funding

  1. Royal Society-SERB

Ask authors/readers for more resources

Cu2O nanoparticles were directly formed on the boron carbonitride (BCN) sheets by thermal condensation technique. Photocatalytic hydrogen evolution efficiency was greatly influenced by three-dimensional distribution and loading of Cu2O in the nanocomposite network structure. The oxidation state, crystalline phase, and size of the supported/un-supported nanoparticles were observed by XPS and XRD, and the internal morphology was determined via HR-TEM analysis. Visible light response and band position was confirmed by measuring the diffuse reflection spectroscopy (DRS). An efficient thermal, combined with a condensation method, was used to synthesize these nanocomposite architectures, which were then embedded into the BCN network. The broad visible light absorption of the synthesised nanocomposites was influenced by Cu2O loading on BCN sheets. The red shift in UV spectra of BCN/Cu2O confirmed that presence of Cu2O on BCN sheets resulted in reduced bandgap compared with the wider bandgap in BCN sheets. The H-2 evolution activity was 59 mu mol/h for the prepared composites, which is 59.5% enhanced compared with bare BCN. The enhanced photocatalytic activity was due to the influence of Cu2O on the BCN surface and enhanced charge separation in the interface at Cu2O with BCN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available