4.6 Article

Design considerations for tension leg platform wind turbines

Journal

MARINE STRUCTURES
Volume 29, Issue 1, Pages 89-114

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marstruc.2012.09.001

Keywords

Offshore wind energy; Tension leg platform; Parametric design; Dynamic analysis

Funding

  1. Statoil through an MIT-NTNU Gemini cooperative research project
  2. European Commission [241402]

Ask authors/readers for more resources

Tension leg platform wind turbines (TLPWTs) represent one potential method for accessing offshore wind resources in moderately deep water. Although numerous TLPWT designs have been studied and presented in the literature, there is little consensus regarding optimal design, and little information about the effect of various design variables on structural response. In this study, a wide range of parametric single-column TLPWT designs are analyzed in four different wind-wave conditions using the Simo, Riflex, and AeroDyn tools in a coupled analysis to evaluate platform motions and structural loads on the turbine components and tendons. The results indicate that there is a trade-off between performance in storm conditions, which improves with larger displacement, and cost, which increases approximately linearly with displacement. Motions perpendicular to the incoming wind and waves, especially in the parked configuration, may be critical for TLPWT designs with small displacement. Careful choice of natural period, diameter at the water line, ballast, pretension, and pontoon radius can be used to improve the TLPWT performance in different environmental conditions and water depths. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available