4.7 Article

Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels

Journal

RENEWABLE ENERGY
Volume 81, Issue -, Pages 490-498

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2015.03.019

Keywords

Dual fuel diesel engine; Biogas; Rice bran oil methyl ester; Pongamia oil methyl ester; Palm oil methyl ester

Funding

  1. Defence Research Laboratory, DRDO, Tezpur, Assam, India [DRLT-P1-2011/Task-44]

Ask authors/readers for more resources

The present study tries to explore the potential of three different types of biodiesel viz. Rice bran oil methyl ester (RBME), Pongamia oil methyl ester (PME) and Palm oil methyl ester (POME) as pilot fuels for a biogas run dual fuel diesel engine designed for power generation. The results indicated that under dual fuel mode, RBME-biogas produced a maximum brake thermal efficiency of 19.97% in comparison to 18.4% and 17.4% respectively for PME-biogas and POME-biogas at 100% load. The emission study divulged that under dual fuel mode, on an average, there was an increase of CO emission by 25.74% and 32.58% for PME-biogas and POME-biogas, respectively in comparison to RBME-biogas. Furthermore, on an average, the HC emissions for PME-biogas and POME-biogas increased by 11.73% and 16.27%, respectively in comparison to RBME-biogas. On the other hand, on an average, there was a decrease in NOX emission by 5.8% and 14%, respectively for PME-biogas and POME-biogas respectively in comparison to RBME-biogas. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

Estimating the Theoretical Performance Limits of a Biogas Powered Dual Fuel Diesel Engine Using Emulsified Rice Bran Biodiesel as Pilot Fuel

Bhaskor J. Bora, Ujjwal K. Saha

JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME (2016)

Article Engineering, Mechanical

Improving the Performance of a Biogas Powered Dual Fuel Diesel Engine Using Emulsified Rice Bran Biodiesel as Pilot Fuel Through Adjustment of Compression Ratio and Injection Timing

Bhaskor J. Bora, Ujjwal K. Saha

JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME (2015)

Article Thermodynamics

Optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine

Bhaskor J. Bora, Ujjwal K. Saha

APPLIED THERMAL ENGINEERING (2016)

Article Green & Sustainable Science & Technology

Experimental evaluation of a rice bran biodiesel - biogas run dual fuel diesel engine at varying compression ratios

Bhaskor J. Bora, Ujjwal K. Saha

RENEWABLE ENERGY (2016)

Article Energy & Fuels

Emission Reduction Operating Parameters for a Dual-Fuel Diesel Engine Run on Biogas and Rice-Bran Biodiesel

Bhaskor J. Bora, Ujjwal K. Saha

JOURNAL OF ENERGY ENGINEERING (2017)

Article Energy & Fuels

Emission Reduction Operating Parameters for a Dual-Fuel Diesel Engine Run on Biogas and Rice-Bran Biodiesel

Bhaskor J. Bora, Ujjwal K. Saha

JOURNAL OF ENERGY ENGINEERING (2017)

Article Thermodynamics

Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas

Bhaskor J. Bora, Ujjwal K. Saha, Soumya Chatterjee, Vijay Veer

ENERGY CONVERSION AND MANAGEMENT (2014)

Article Energy & Fuels

Influence of Emulsified Palm Biodiesel as Pilot Fuel in a Biogas Run Dual Fuel Diesel Engine

Biplab K. Debnath, Bhaskor J. Bora, Niranjan Sahoo, Ujjwal K. Saha

JOURNAL OF ENERGY ENGINEERING (2014)

Proceedings Paper Engineering, Mechanical

Effect of Load Level on Performance and Emission Characteristics of a Biogas Run Dual Fuel Diesel Engine

Bhaskor J. Bora, Ujjwal K. Saha, S. Chatterjee, Vijay Veer

FLUID MECHANICS AND FLUID POWER - CONTEMPORARY RESEARCH (2017)

Proceedings Paper Engineering, Mechanical

EXPERIMENTAL INVESTIGATION OF A DUAL FUEL DIESEL ENGINE RUN ON SCRUBBED BIOGAS USING THE METHOD OF ADSORPTION

Vijay S. Verma, Bhaskor J. Bora, Achinta Sarkar, Ujjwal K. Saha

PROCEEDINGS OF THE ASME 12TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS - 2014, VOL 2 (2014)

Proceedings Paper Engineering, Mechanical

ON THE ATTAINMENT OF OPTIMUM INJECTION TIMING OF PILOT FUEL IN A DUAL FUEL DIESEL ENGINE RUN ON BIOGAS

Bhaskor J. Bora, Ujjwal K. Saha

PROCEEDINGS OF THE ASME 12TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS - 2014, VOL 2 (2014)

Article Green & Sustainable Science & Technology

Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States

Cameron Bracken, Nathalie Voisin, Casey D. Burleyson, Allison M. Campbell, Z. Jason Hou, Daniel Broman

Summary: This study presents a methodology and dataset for examining compound wind and solar energy droughts, as well as the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020 infrastructure. The results show that compound wind and solar droughts have distinct spatial and temporal patterns across the CONUS, and the characteristics of energy droughts are regional. The study also finds that compound high load events occur more often during compound wind and solar droughts than expected.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources

Ning Zhang, Yanghao Yu, Jiawei Wu, Ershun Du, Shuming Zhang, Jinyu Xiao

Summary: This paper provides insights into the optimal configuration of CSP plants with different penetrations of wind power by proposing an unconstrained optimization model. The results suggest that large solar multiples and TES are preferred in order to maximize profit, especially when combined with high penetrations of wind and photovoltaic plants. Additionally, the study demonstrates the economy and feasibility of installing electric heaters (EH) in CSP plants, which show a linear correlation with the penetration of variable energy resources.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Impact of the air supply system configuration on the straw combustion in small scale batch-boiler- experimental and numerical studies

M. Szubel, K. Papis-Fraczek, S. Podlasek

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis

J. Silva, J. C. Goncalves, C. Rocha, J. Vilaca, L. M. Madeira

Summary: This study investigated the methanation of CO2 in biogas and compared two different methanation reactors. The results showed that the cooled reactor without CO2 separation achieved a CO2 conversion rate of 91.8%, while the adiabatic reactors achieved conversion rates of 59.6% and 67.2%, resulting in an overall conversion rate of 93.0%. Economic analysis revealed negative net present worth values, indicating the need for government monetary incentives.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources

Yang Liu, Yonglan Xi, Xiaomei Ye, Yingpeng Zhang, Chengcheng Wang, Zhaoyan Jia, Chunhui Cao, Ting Han, Jing Du, Xiangping Kong, Zhongbing Chen

Summary: This study investigated the effect of using nanofiber membrane composites containing Prussian blue-like compound nanoparticles (PNPs) to relieve ammonia nitrogen inhibition of rural organic household waste during high-solid anaerobic digestion and increase methane production. The results showed that adding NMCs with 15% PNPs can lower the concentrations of volatile fatty acids and ammonia nitrogen, and increase methane yield.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)

Zhong Ge, Xiaodong Wang, Jian Li, Jian Xu, Jianbin Xie, Zhiyong Xie, Ruiqu Ma

Summary: This study evaluates the thermodynamic, exergy, and economic performance of a double-stage organic flash cycle (DOFC) using ten eco-friendly hydrofluoroolefins. The influences of key parameters on performance are analyzed, and the advantages of DOFC over single-stage type are quantified.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm

Nicolas Kirchner-Bossi, Fernando Porte-Agel

Summary: This study investigates the optimization of power density in wind farms and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced to optimize power density and turbine layout. The results show that the PDGA-driven solutions significantly reduce the levelized cost of energy (LCOE) compared to the default layout, and exhibit a convex relationship between area and LCOE or power density.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Experimental investigation of indoor lighting/thermal environment of liquid-filled energy-saving windows

Chunxiao Zhang, Dongdong Li, Lin Wang, Qingpo Yang, Yutao Guo, Wei Zhang, Chao Shen, Jihong Pu

Summary: In this study, a novel reversible liquid-filled energy-saving window that effectively regulates indoor solar radiation heat gain is proposed. Experimental results show that this window can effectively reduce indoor temperature during both summer and winter seasons, while having minimal impact on indoor illuminance.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf

Alessandro L. Aguiar, Martinho Marta-Almeida, Mauro Cirano, Janini Pereira, Leticia Cotrim da Cunha

Summary: This study analyzed the Brazilian Equatorial Shelf using a high-resolution ocean model and found significant tidal variations in the area. Several hypothetical barrages were proposed with higher annual power generation than existing barrages. The study also evaluated the installation effort of these barrages.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island

Francesco Superchi, Nathan Giovannini, Antonis Moustakis, George Pechlivanoglou, Alessandro Bianchini

Summary: This study focuses on the optimization of a hybrid power station on the Tilos island in Greece, aiming to increase energy export and revenue by optimizing energy fluxes. Different scenarios are proposed to examine the impact of different agreements with the grid operator on the optimal solution.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Comparison of control strategies for efficient thermal energy storage to decarbonize residential buildings in cold climates: A focus on solar and biomass sources

Peimaneh Shirazi, Amirmohammad Behzadi, Pouria Ahmadi, Sasan Sadrizadeh

Summary: This research presents two novel energy production/storage/usage systems to reduce energy consumption and environmental effects in buildings. A biomass-fired model and a solar-driven system integrated with photovoltaic thermal (PVT) panels and a heat pump were designed and assessed. The results indicate that the solar-based system has an acceptable energy cost and the PVT-based system with a heat pump is environmentally superior. The biomass-fired system shows excellent efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai

Zihao Qi, Yingling Cai, Yunxiang Cui

Summary: This study aims to investigate the operational characteristics of the solar-ground source heat pump system (SGSHPS) in Shanghai under different operation modes. It concludes that tandem operation mode 1 is the optimal mode for winter operation in terms of energy efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil

L. Bartolucci, S. Cordiner, A. Di Carlo, A. Gallifuoco, P. Mele, V. Mulone

Summary: Spent coffee grounds are a valuable biogenic waste that can be used as a source of biofuels and valuable chemicals through pyrolysis and solvent extraction processes. The study found that heavy organic bio-oil derived from coffee grounds can be used as a carbon-rich biofuel, while solvent extraction can extract xantines and p-benzoquinone, which are important chemicals for various industries. The results highlight the promising potential of solvent extraction in improving the economic viability of coffee grounds pyrolysis-based biorefineries.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation

Luiza de Queiroz Correa, Diego Bagnis, Pedro Rabelo Melo Franco, Esly Ferreira da Costa Junior, Andrea Oliveira Souza da Costa

Summary: Building-integrated photovoltaics, especially organic solar technology, are important for reducing greenhouse gas emissions in the building sector. This study analyzed the performance of organic panels laminated in glass in a vertical installation in Latin America. Results showed that glass lamination and vertical orientation preserved the panels' performance and led to higher energy generation in winter.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical simulation of fin arrangements on the melting process of PCM in a rectangular unit

Zhipei Hu, Shuo Jiang, Zhigao Sun, Jun Li

Summary: This study proposes innovative fin arrangements to enhance the thermal performance of latent heat storage units. Through optimization of fin distribution and prediction of transient melting behaviors, it is found that fin structures significantly influence heat transfer characteristics and melting behaviors.

RENEWABLE ENERGY (2024)