4.7 Article

Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 34, Issue 1, Pages 72-84

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2011.09.003

Keywords

Gas hydrate saturation; Electrical anisotropy; Sand reservoirs; Gulf of Mexico

Funding

  1. US Department of Energy, National Energy Technology Laboratory [DE-FC26-05NT42248]
  2. agency of the United States Government

Ask authors/readers for more resources

We present new results and interpretations of the electrical anisotropy and reservoir architecture in gas hydrate-bearing sands using logging data collected during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II. We focus specifically on sand reservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R-parallel to and the resistivity of the current flowing perpendicular to the bedding, R-perpendicular to. We find the sand reservoir in Hole AC21-A to be relatively isotropic, with R-parallel to and R-perpendicular to values close to 2 Omega m. In contrast, the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R-parallel to is between 2 and 30 Omega m, and R-perpendicular to is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gas hydrate-bearing sand reservoir in Hole WR313-H. The results showed that gas hydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gas hydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gas hydrate forming in thin layers within larger sand units. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available