4.5 Article

Magnetization transfer induced biexponential longitudinal relaxation

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 60, Issue 3, Pages 555-563

Publisher

WILEY
DOI: 10.1002/mrm.21671

Keywords

magnetization transfer; inversion recovery; rat brain; chemical exchange; Bayesian probability

Funding

  1. National Institutes of Health (NIH) [EB002083, R24-CA83060]

Ask authors/readers for more resources

Longitudinal relaxation of brain water H-1 magnetization in mammalian brain in vivo is typically analyzed on a per-voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery (IR) data from gray matter of rats at 64 exponentially spaced recovery times. Using Bayesian probability for model selection brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7T, the amplitude fraction of the rapidly relaxing component is 3.4% +/- 0.7% with a rate constant of 44 +/- 12 s(-1) (mean +/- SD; 174 voxels from four rats). The rate constant of the slow relaxing component is 0.66 +/- 0.04 s(-1). At 11.7T, the corresponding values are 6.9% +/- 0.9%,19 +/- 5 s(-1), and 0.48 +/- 0.02 s(-1) (151 voxels from four rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer (MT) between bulk water protons and nonaqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available