4.7 Article

A Detailed Model on Kinetics and Microstructure Evolution during Copolymerization of Ethylene and 1-Octene: From Coordinative Chain Transfer to Chain Shuttling Polymerization

Journal

MACROMOLECULES
Volume 47, Issue 14, Pages 4778-4789

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma500874h

Keywords

-

Funding

  1. National Research Foundation of Korea [110100713]
  2. Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government Ministry of Knowledge Economy [201040100660]

Ask authors/readers for more resources

We introduce a theoretical model based upon the kinetic Monte Carlo (KMC) simulation approach capable of quantifying chain shuttling copolymerization (CSP) of ethylene and 1-octene in a semibatch operation. To make a deeper understanding of kinetics and evolution of microstructure, the reversible transfer reaction is first investigated by applying each of the individual catalysts to the reaction media, and the competences and shortcomings of a qualified set of CSP catalysts are discussed based on coordinative chain transfer copolymerization (CCTP) requirements. A detailed simulation study is also provided, which reflects and compares the contributions of chain transfer reversibility and other chain breaking reactions in controlling distribution fashion of molecular weight and chemical composition. The developed computer code is executed to capture developments in dead chain concentration and time-driven composition drift during CCTP. Also, the effect of chain shuttling agent (CSA) on the copolymerization kinetics is theoretically studied by simultaneous activation of both catalysts. In this way, it is attempted to make control over comonomer incorporation in the course of copolymerization. The molecular-level criteria reflecting copolymer properties, i.e., ethylene sequence length distribution and longest ethylene sequence length, as the signature of CSA performance, are virtually simulated in the presence and absence of hydrogen to capture an image on gradient copolymers in CCTP and blocks with gradually changing composition in CSP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available