4.7 Article

Inhibition of superoxide anion-mediated impairment of endothelium by treatment with luteolin and apigenin in rat mesenteric artery

Journal

LIFE SCIENCES
Volume 83, Issue 3-4, Pages 110-117

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2008.05.010

Keywords

luteolin; apigenin; oxidative stress; endothelium; relaxation; hyperpolarization; EDHF

Ask authors/readers for more resources

This study was designed (i) to test the hypothesis that the endothelium-derived hyperpolarizing factor (EDHF) component of ACh-induced vasorelaxation and hyperpolarization of smooth muscle cells (SMCs) are impaired following exposure to superoxide anion, and (ii) to further investigate whether luteolin and apigenin induce vasoprotection at the vasoactive concentrations in rat mesenteric artery. Rat mesenteric arterial rings were isolated for isometric force recording and electrophysiological studies. Perfusion pressure of mesenteric arterial bed was measured and visualization of superoxide production was detected with fluorescent dye. 300 mu M pyrogallol significantly decreased the relaxation and hyperpolarization to ACh. Luteolin and apigenin both induced vasoprotection against loss of the EDHF component of ACh-induced relaxation and attenuated the impairment of hyperpolarization to ACh. Oxidative fluorescent microtopography showed that either luteolin or apigenin significantly reduced the superoxide levels. The results suggest that superoxide anion impairs ACh-incluced relaxation and hyperpolarization of SMC in resistance arteries through the impairment of EDHF mediated responses. Luteolin and apigenin protect resistance arteries from injury, implying that they may be effective in therapy for vascular diseases associated with oxidative stress. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available