4.4 Article

Effect of laser therapy on skeletal muscle repair process in diabetic rats

Journal

LASERS IN MEDICAL SCIENCE
Volume 28, Issue 5, Pages 1331-1338

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s10103-012-1249-2

Keywords

Collagen; Muscle; Skeletal; Phototherapy; Wound healing

Funding

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2011/20867-3, 2011/17638-2, 2011/04452-8]
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [11/04452-8, 11/17638-2] Funding Source: FAPESP

Ask authors/readers for more resources

Skeletal muscle myopathy is a common source of disability in diabetic patients. This study evaluated whether low-level laser therapy (LLLT) influences the healing morphology of injured skeletal muscle. Sixty-five male Wistar rats were divided as follows: (1) sham; (2) control; (3) diabetic; (4) diabetic sham; (5) nondiabetic cryoinjured submitted to LLLT (LLLT); (6) diabetic cryoinjured submitted to LLLT (D-LLLT); and (7) diabetic cryoinjured non-treated (D). Diabetes was induced with streptozotocin. Anterior tibialis muscle was cryoinjured and received LLLT daily (780 nm, 5 J/cm(2), 10 s per point; 0.2 J; total treatment, 1.6 J). Euthanasia occurred on day 1 in groups 1, 2, 3, and 4 and on days 1, 7, and 14 in groups 5, 6, and 7. Muscle samples were processed for H&E and Picrosirius Red and photographed. Leukocytes, myonecrosis, fibrosis, and immature fibers were manually quantified using the ImageJ software. On day 1, all cryoinjured groups were in the inflammatory phase. The D group exhibited more myonecrosis than LLLT group (p < 0.05). On day 14, the LLLT group was in the remodeling phase; the D group was still in the proliferative phase, with fibrosis, chronic inflammation, and granulation tissue; and the D-LLLT group was in an intermediary state in relation to the two previous groups. Under polarized light, on day 14, the LLLT and D-LLLT groups had organized collagen bundles in the perimysium, whereas the diabetic groups exhibited fibrosis. LLLT can have a positive effect on the morphology of skeletal muscle during the tissue repair process by enhancing the reorganization of myofibers and the perimysium, reducing fibrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available