4.7 Article

Syndrome measurement strategies for the [[7,1,3]] code

Journal

QUANTUM INFORMATION PROCESSING
Volume 14, Issue 6, Pages 1841-1854

Publisher

SPRINGER
DOI: 10.1007/s11128-015-0988-y

Keywords

Quantum error correction; Quantum fault tolerance; Syndrome measurements

Funding

  1. MITRE Innovation Program [51MSR662]

Ask authors/readers for more resources

Quantum error correction (QEC) entails the encoding of quantum information into a QEC code space, measuring error syndromes to properly locate and identify errors, and, if necessary, applying a proper recovery operation. Here we compare three syndrome measurement protocols for the [[7,1,3]] QEC code: Shor states, Steane states, and one ancilla qubit by simulating the implementation of 50 logical gates with the syndrome measurements interspersed between the gates at different intervals. We then compare the fidelities for the different syndrome measurement types. Our simulations show that the optimal syndrome measurement strategy is generally not to apply syndrome measurements after every gate but depends on the details of the error environment. Our simulations also allow a quantum computer programmer to weigh computational accuracy versus resource consumption (time and number of qubits) for a particular error environment. In addition, we show that applying syndrome measurements that are unnecessary from the standpoint of quantum fault tolerance may be helpful in achieving better accuracy or in lowering resource consumption. Finally, our simulations demonstrate that the single-qubit non-fault-tolerant syndrome measurement strategy achieves comparable fidelity to those that are fault tolerant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available