4.7 Article

Energy-separated sequential irradiation forripple pattern tailoring on silicon surfaces

Journal

APPLIED SURFACE SCIENCE
Volume 357, Issue -, Pages 184-188

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2015.08.262

Keywords

Ripples; Silicon; Surface patterning; Irradiation; Rutherford backscattering spectroscopy

Ask authors/readers for more resources

Nanoscale ripples on semiconductor surfaces have potential application in biosensing and optoelectronics, but suffer from uncontrolled surface-amorphization when prepared by conventional ion-irradiation methods. A two-step, energy-separated sequential-irradiation enables simultaneous control of surface-amorphization and ripple-dimensions on Si(1 0 0). The evolution of ripples using 100 keV Ar+ bombardment and further tuning of the patterns using a sequential-irradiation by 60 keV Ar+ at different fluences are demonstrated. The advantage of this approach as opposed to increased fluence at the same energy is clarified by atomic force microscopy and Rutherford backscattering spectroscopy investigations. The explanation of our findings is presented through DAMAGE simulation. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available