4.6 Article

Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq

Journal

LAND DEGRADATION & DEVELOPMENT
Volume 29, Issue 11, Pages 4005-4014

Publisher

WILEY
DOI: 10.1002/ldr.3148

Keywords

combined optical-radar dataset; field sample rasterization; random forest regression; soil salinity prediction; support vector regression

Funding

  1. East China University of Technology [DHTP2018001]
  2. Australian Agency for International Development [LWR/2009/034]

Ask authors/readers for more resources

Soil salinization affects crop production and food security. Mapping spatial distribution and severity of salinity is essential for agricultural management and development. This study was aimed to test the effectiveness of machine learning algorithms for soil salinity mapping taking the Mussaib area in Central Mesopotamia as an example. A combined dataset consisting of Landsat 5 Thematic Mapper (TM) and ALOS L-band radar data acquired at the same time was used for fulfilling the task. Relevant biophysical indicators were derived from the TM images, and the soil component was retrieved by removing the vegetation contribution from the L-band radar backscattering coefficients. Field-measured salinity at the three corner plots of triangles were averaged to represent the salinity of these triangular areas. These averaged plots were converted into raster by either direct rasterization or buffering-based rasterization into different cell size to create the training set (TS). One of the three triangle corners was randomly selected to constitute a validation set (VS). Using this TS, the support vector regression (SVR) and random forest regression (RFR) algorithms were then applied to the combined dataset for salinity prediction. Results revealed that RFR performed better than SVR with higher accuracy (93.4-94.2% vs. 85.2-89.4%) and less normalized root mean square error (NRMSE; 6.10-7.69% vs. 10.29-10.52%) when calibrated with both TS and VS. In comparison, prediction by multivariate linear regression (MLR) achieved in our previous study using the same datasets also showed less NRMSE than SVR. Hence, both RFR and MLR are recommended for soil salinity mapping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available