4.7 Article

An integrated CMOS high voltage supply for lab-on-a-chip systems

Journal

LAB ON A CHIP
Volume 8, Issue 9, Pages 1524-1529

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b804275f

Keywords

-

Funding

  1. Natural Science and Engineering Research Council (NSERC) of Canada
  2. DALSA Semiconductor

Ask authors/readers for more resources

Electrophoresis is a mainstay of lab-on-a-chip (LOC) implementations of molecular biology procedures and is the basis of many medical diagnostics. High voltage (HV) power supplies are necessary in electrophoresis instruments and are a significant part of the overall system cost. This cost of instrumentation is a significant impediment to making LOC technologies more widely available. We believe one approach to overcoming this problem is to use microelectronic technology (complementary metal-oxide semiconductor, CMOS) to generate and control the HV We present a CMOS-based chip (3 mm x 2.9 mm) that generates high voltages (hundreds of volts), switches HV outputs, and is powered by a 5 V input supply (total power of 28 mW) while being controlled using a standard computer serial interface. Microchip electrophoresis with laser induced fluorescence (LIF) detection is implemented using this HV CMOS chip. With the other advancements made in the LOC community (e.g. micro-fluidic and optical devices), these CMOS chips may ultimately enable 'true' LOC solutions where essentially all the microfluidics, photonics and electronics are on a single chip.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available